
SPSP-SSC XRQ
(Dated: September 18, 2025)

We present SPSP–SSC as a closed axiom system where the observable world is the local projection
of a boundary-less, multi-dimensional quantum sphere. Gravity is the projected centrifugal rotation
of the base state; the vacuum is the corresponding centrifugal resolution field propagating at a
universal speed c. A non-propagating scalar Φ enforces slice-wise balance and vanishes outside
sources. From these axioms we derive, with step-by-step proofs and worked constructions: (i) the
Einstein–Hilbert bulk term with Gibbons–Hawking–York boundary; (ii) internal normalization of
G by a Gauss-law equality of resolution flux and content; (iii) the Einstein equations with only two
tensor DOF, luminal propagation, and a full 1PN solution (metric, γ = β = 1, no −1PN dipole,
GR quadrupole, and periastron advance); (iv) the low-energy SM gauge group and one-generation
hypercharges via an explicit RREF of the anomaly system; (v) quantitative outputs from SSC
(families = 3, toy-kernel coupling ratios & absolute normalizations at a reference scale, Λ = αH2/c2

with α = 2, hierarchical Yukawas from fiber overlaps); and (vi) an explicit EIH 1PN N-body
Lagrangian with a term-by-term mapping back to the 1PN metric. All steps are derived from SSC
axioms; no external GR/SM assumptions are imported.
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I. INTRODUCTION AND NOTATION

The Single-Point Super-Projection / Single-Sphere
Cosmology (SPSP–SSC) models observed physics as
a projection of a multi-dimensional quantum sphere.
“Rotation” of the base manifests as spacetime curvature;
the vacuum is a centrifugal resolution flow at speed c. A
scalar Φ is a constraint (no kinetic term), enforcing local
balance between mass-like and energy-like contents.

Notation. Spacetime indices µ, ν = 0..3; spatial i, j =
1..3; signature (−+++).

√
−g is the metric density; hij

the ADM 3-metric. We keep explicit c,G until internal
normalization is fixed. All proofs cite axioms by label.

II. AXIOMS

Axiom 1 (SSC-BASE) Multi-dimensional quan-
tum sphere, no true boundary. The physical
substrate is a compact, boundary-less “quantum sphere”
Sbase with effectively unbounded internal variability. It
admits a global self-identification (Klein-like inversion),
so descriptions that appear to refer to an “outside”
can be re-expressed within Sbase. No external
medium or absolute background exists; all observables
arise as projections of structures internal to Sbase.
Interpretation: the base is topologically closed and
self-contained; there is no physical edge to cross.

Axiom 2 (SSC-4D-PROJ) 4D projection strata
from twist/density. Regions of enhanced resolution
density and twist within Sbase generate 4D projection
strata (M, g). Our observed 3+1 spacetime is a
local projection patch of such a stratum. The metric
g and its curvature encode the kinematics of this
projection. Notes: multiple strata can exist; gluing
between patches respects induced metric continuity up to
standard junction conditions.

Axiom 3 (INS/OUT-DUAL) Inside vs. projec-
tion is a gauge choice. Describing observers as

inside Sbase or as living on a projection of it are
empirically equivalent descriptions. Only projection
data are observable; “inside/outside” language is a
representational redundancy.

Axiom 4 (PR-MAP) Local normalized
projection. There exists a surjective, measurable
projection map assigning observables by a normalized
fiber average:

O(x) =
∫
S
W (x, σ)Omicro(σ) dµ(σ), (1)∫

S
W (x, σ) dµ(σ) = 1. (2)

Here σ indexes micro-states on the fiber S with
measure dµ; W ≥ 0 is local in x, smooth in admissible
domains, and invariant under reparametrizations of σ.

Axiom 5 (UNI-MET) Universality & locality
(single metric coupling). All matter and gauge fields
couple locally and minimally to a single spacetime metric
g. No second metric, preferred foliation, or long-range
additional tensor/scalar/vector background is allowed at
the fundamental level. Consequence: metric dynamics
alone governs free fall (equivalence principle).

Axiom 6 (Φ-CONST) Sorting field is a constraint
(non-propagating). A scalar Φ enforces slice-wise
balance between mass-like and energy-like contents via an
elliptic constraint. In the action, Φ appears only as a
Lagrange multiplier term −Φ(ρ − ε); there is no kinetic
term and no (∇Φ)2. On spatial slices Σt, Φ solves

∇2Φ = 4πG (ρ− ε)

with admissible (Dirichlet/Neumann/Robin) boundary
data. Φ carries no radiative degree of freedom.

Axiom 7 (GR-Ω) Gravity = projected centrifugal
rotation. Curvature of g is the projection of rotational
(centrifugal) dynamics internal to Sbase. There is
no additional gravitational substance; metric geometry
suffices. Locality and diffeomorphism invariance follow
from this geometric origin.

Axiom 8 (VAC-Ωc) Vacuum = centrifugal reso-
lution field at speed c. The vacuum is a uniform
centrifugal “resolution” flow whose characteristic update
speed is c. Propagating disturbances (photons, tensor
gravitational waves) ride on this flow and thus share
the same luminal characteristic cone. Remark: “light
travels” is shorthand for “the resolution state updates at
speed c”.

Axiom 9 (GA0) Global-resolution causality (sin-
gle luminal cone). All radiative characteristics
coincide with the luminal cone defined by c. No
superluminal or subluminal long-range propagator exists
for fundamental interactions. The constraint field Φ
never radiates (no wave operator acting on Φ).
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Axiom 10 (GA2) Flux = content
(internal normalization of G)

For any large enclosing surface SR in a near-flat patch,∮
SR

(resolution flux)·dA⃗ =

∫
int(SR)

(resolution content) d3x,

where the flux is the geometric flux induced by the
projected rotation and the content includes density and
curvature contributions. This equality fixes the overall
coupling in the gravitational action, determining G
internally (no external Newtonian matching).

Axiom 11 (GAΦ) Exterior neutrality of Φ (no
scalar hair/dipole). If supp(ρ − ε) is enclosed by a
smooth 2-surface S with homogeneous boundary data for
Φ and decay at infinity, the unique exterior solution is
Φ ≡ 0. Hence Φ contributes no long-range field, no scalar
hair, and no −1PN dipole radiation.

Axiom 12 (CB∞) Expanding foliation (no exter-
nal edge). On the largest scales, the projection stratum
admits an expanding point-cloud foliation. Localized
systems are treated in near-flat patches glued consistently
to this foliation. There is no physical spatial edge to the
universe.

Axiom 13 (GV1) Universal validity (no screen-
ing window). The same equations obtained from the
action apply across curvatures and densities; there is
no regime where different fundamental equations replace
them. (Effective expansions are allowed but do not
change the underlying equations.)

Axiom 14 (AM1) One visible U(1); extra abelian
factors are heavy/hidden. At long range there is a
single visible abelian gauge factor. Any additional U(1)s
(if present) are Higgsed/Stückelberg-ed at high scales,
leaving no extra long-range vector force.

Axiom 15 (NA-low) UV group allowed; low en-
ergy = SU(3)× SU(2)×U(1). While a UV unification
may exist, the low-energy unbroken compact factors are
color SU(3), weak SU(2), and the visible U(1) of AM1.
No extra compact factor remains light without additional
matter/Higgs that would violate CONS1.

Axiom 16 (CONS1) Admissible matter/gauge
sets: anomaly-free and renormalizable. Any
acceptable low-energy content must satisfy: (i)
cancellation of all gauge and mixed anomalies per
generation ( SU(3)2U(1), SU(2)2U(1), U(1)3, and
gravitational–U(1) ), and the global SU(2) (Witten)
constraint; (ii) interactions are renormalizable (operator
dimension ≤ 4).

Axiom 17 (CHARGE1) Photon charge rule. Af-
ter electroweak breaking, the massless photon generator
is the linear combination Q = T3 + Y , where T3 is
the diagonal SU(2) generator and Y the U(1) generator
(with conventional normalization). This fixes the weak
hypercharges once the electric charges are identified.

Axiom 18 (MASS-PRIOR) Mass values pre-exist
in the substate; projection preserves them.
Rest-mass parameters are features of the underlying
SSC substate. The projection does not create mass; it
encodes pre-existing mass parameters into the effective
Lagrangian.

Axiom 19 (HIGGS-PROJ) Higgs as projection
channel (not origin of mass). The Higgs doublet
is the minimal projection channel that encodes substate
masses via renormalizable Yukawa couplings. Yukawa
matrices are encoders (overlap integrals on the fiber), not
sources of mass.

Axiom 20 (FAM-PROJ) Families from projec-
tion multiplicity. The number of fermion families
equals the multiplicity of distinct SSC substates that
project to the same low-energy charge pattern. Minimal
nontrivial multiplicity corresponds to three families
(linked to the ℓ=1 rotational irrep on the fiber).

Axiom 21 (GC-SSC) Gauge strengths from SSC
geometry; running as coarse-graining. At
renormalization scale µ,

1

g2i (µ)
= κ

〈
Pi(σ)

[
ρres(x, σ) + βK(x, σ)

]〉
µ
,

where Pi projects the i-th gauge channel on the
fiber, ρres is the resolution-density, K a scalar
curvature on the projection stratum, κ is fixed by GA2
(same normalization that fixes G), and ⟨·⟩µ denotes
coarse-graining to scale µ. RG running corresponds to
the µ-dependence of this coarse-graining and reproduces
standard one-loop β-functions.

Axiom 22 (Λ-AVG) Cosmological constant as a
cosmic residual. After GA2 neutral subtraction on
the expanding foliation (CB∞), a small, homogeneous
baseline of the centrifugal resolution field remains. This
residual appears in the large-scale Einstein equations as
a cosmological constant Λ, scaling as Λ = αH2/c2 when
the residual tracks a fixed fraction of the critical density;
α is determined by SSC weighting.

III. GRAVITY FROM SSC: ACTION,
BOUNDARY, AND FIELD EQUATIONS

Theorem 1 (EH+GHY from SSC) (unique metric
action). ...

Assuming GR-Ω, UNI-MET, diffeo invariance, locality,
and a Dirichlet-posed variational problem, the unique
local 4D action with at-most second-order metric
equations is

Sgrav =
1

16πG

∫ √
−g R d4x+

1

8πG

∫
∂M

√
|h|K d3y.

Descriptor: no extra fields, no higher derivatives;
boundary term ensures well-posed variation at fixed
induced metric.



4

Global SU(2) anomaly (Witten). Per generation the
number of left-handed SU(2)L doublets is Ndbl = 3
(colored qL) + 1 (leptonic ℓL) = 4 (even), so the global
anomaly is absent.

Cubic condition via the (s, p) trick. Solve the linear
system for {YuR

, YdR , YℓL} in terms of YqL , YeR , then
define s := YuR

+ YdR − 2YqL and p := YuR
− YdR . The

linear constraints fix s = 0 and YℓL = −3YqL . The cubic
U(1)3 anomaly becomes −Y 3

eR + 6Y 3
qL − 3Y 3

uR
− 3Y 3

dR
+

2Y 3
ℓL

= −Y 3
eR − 3p3, forcing p = YeR = −1 in units where

YqL = 1/6, which yields the unique SM hypercharges.
Step-by-step proof: (i) Admissible bulk scalars ⇒√
−gf(Rµνρσ, g). (ii) Second-order field eqs ⇒ Lovelock

densities only; in 4D: const + R. (iii) Palatini identity
gives bulkGµνδg

µν + boundary∇·V . (iv) GHY uniquely
cancels n·∇δg for fixed hab. (v) GA2 fixes overall 1/16πG.
□

Explicit EH+GHY variation and boundary
bookkeeping

For the Einstein–Hilbert term,

δ(
√
−gR) =

√
−g Gµν δgµν +

√
−g∇µV µ, (3)

V µ := gαβ∇µδgαβ −∇βδgµβ . (4)

On a manifold with non-null boundary ∂M with
outward unit normal nµ,

δSEH =
1

16πG

∫
M

√
−g Gµνδgµν +

1

16πG

∫
∂M

√
|h|nµV µ.

The Gibbons–Hawking–York term is SGHY =
1

8πG

∫
∂M

√
|h|K with variation

δSGHY =
1

8πG

∫
∂M

√
|h|

[
(Kab −Khab) δhab − nµV µ

]
.

For Dirichlet boundary data (δhab = 0), the (Kab −
Khab) δh

ab term vanishes and the −nµV µ cancels
the boundary piece from SEH, yielding a well-posed
variational problem with fixed induced metric. Thus
the metric Euler–Lagrange equations are Gµν = 8πGTµν
with no leftover boundary variations.

Fixing the 1/16πG coefficient (GA2). In the weak,
static limit, write g00 = −1 + 2ΦN/c

2 and gij =
(1 + 2ΦN/c

2)δij . The linearized Einstein equations give
∇2ΦN = 4πGρ. Integrating over a ball BR enclosing
total mass M =

∫
BR

ρ d3x and using Gauss’ law:∮
SR

∇ΦN · dS = 4πGM.

For a point mass, ΦN = −GM/r gives the same
surface flux. This is precisely the GA2 “flux=content”
statement, and fixes the coupling in the bulk action to
be 1/16πG so that the Newtonian limit reproduces the
observed G.

Explicit G normalization example (uniform sphere)

Let ρ = ρ0 Θ(R− r) (static). Solve ∇2ΦN = 4πGρ:

ΦN (r) =

−2πGρ0
(
R2 − r2

3

)
, r ≤ R,

−GM
r
, M =

4π

3
ρ0R

3, r ≥ R.

Compute the surface flux at any r ≥ R:
∮
Sr

∇ΦN · dS =

4πGM . Thus GA2 (flux = content) reproduces the same
G as the metric sector with the 1/16πG normalization.
Sorting sector. Φ is Lagrange multiplier (Φ-CONST):

Ssort =

∫ √
−g [−Φ(ρ− ε)] d4x.

Field equations:

Rµν − 1
2Rgµν = 8πGTµν , ∇2Φ = 4πG(ρ− ε). (5)

Theorem 2 (Internal normalization of G (Gauss law))
On a large enclosing SR in a near-flat patch, GA2 equates
resolution flux to content, fixing the action coefficient
to 1/16πG internally (no Newtonian matching).
Descriptor: the same G appears in both Einstein and
Poisson sectors.

Theorem 3 (Exterior neutrality of Φ (no scalar hair))
For Φ|S = 0 on a smooth 2-surface S enclosing
supp(ρ − ε) and Φ → 0 at infinity, the unique exterior
solution is Φ ≡ 0. Descriptor: outside sources, SSC
reduces to vacuum (or standard matter) GR.

Proof (maximum principle & Hopf lemma): Harmonic Φ
on Ωext attains extrema on S ∪{∞} and both values are
zero ⇒ Φ ≡ 0. Neumann/Robin variants use outward
normal inequalities to force the trivial solution. □
Bianchi & conservation (completeness check). Vary-

ing Sgrav gives ∇µGµν = 0 (Bianchi); hence ∇µTµν = 0
on-shell. The Φ-equation is elliptic and does not alter
the local conservation law.

IV. FULL ADM/DIRAC ANALYSIS

ADM decomposition ds2 = −N2dt2 + hij(dx
i +

N idt)(dxj +N jdt). Momenta πij =
√
h

16πG (K
ij −Khij).

Primary constraints: πN ≈ 0, πi ≈ 0, πΦ ≈ 0.
Hamiltonian (up to boundary):

H =

∫
d3x (NH+N iHi + λΦπΦ), (6)

H =
16πG√

h
(πijπ

ij − 1
2π

2)−
√
h

16πG
(3)R

+
√
hΦ(ρ− ε) +Hmatter, (7)

Hi = −2∇jπji +Hmatter
i . (8)

Secondary: H ≈ 0, Hi ≈ 0, CΦ :=
√
h(ρ − ε) −√

h∇2Φ/(4πG) ≈ 0.
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Algebra and DOF. {H,H}, {Hi,H}, {Hi,Hj} close

as in GR (first class). {πΦ(x), CΦ(y)} =
√
h

4πG∇
2
xδ

(3)(x−y)
is invertible⇒ second-class pair. Dirac-bracket eliminate
(πΦ, CΦ). Remaining: 2 configuration DOF (tensor
polarizations). No scalar propagator.

Dirac bracket for the (πΦ, CΦ) pair. Primary con-
straint πΦ ≈ 0 and secondary CΦ := ∇2Φ−4πG(ρ−ε) ≈ 0
form a second-class pair with

{πΦ(x), CΦ(y)} = ∇2δ(3)(x− y).

Let G(x,y) be the Green operator satisfying
∇2G(x,y) = δ(3)(x − y) with the same boundary
data as Φ. The Dirac bracket for any functionals F,G is

{F,G}D = {F,G}

−
∫

d3u d3v {F, πΦ(u)}G(u,v) {CΦ(v), G}

+ (πΦ ↔ CΦ). (9)

Since hij , π
ij have vanishing Poisson brackets with πΦ

and CΦ, their Dirac brackets equal their Poisson brackets.
Thus eliminating (Φ, πΦ) leaves the standard GR phase
space and symplectic structure.

Constraint algebra and DOF count

With smearing functions,

H[N ] =

∫
d3xN H, H[N⃗ ] =

∫
d3xN iHi,

the (Dirac) algebra closes as in GR:

{H[N⃗ ], H[M⃗ ]} = H[LN⃗M⃗ ], (10)

{H[N⃗ ], H[M ]} = H[LN⃗M ], (11)

{H[N ], H[M ]} = Hi

[
hij(N∂jM −M∂jN)

]
. (12)

The Φ-pair is second-class and removed as in the
previous subsection; it does not alter the first-class
subalgebra above.

Degrees of freedom. Canonical variables per point:
(hij , π

ij) (12), (N, πN ) (2), (N i, πi) (6), (Φ, πΦ) (2)
⇒ 22. Constraints: 8 first-class (πN , πi,H,Hi) and 2
second-class (πΦ, CΦ). Thus

#DOF = 1
2 [22− 2× 8− 2] = 2,

the two tensor polarizations of GR.

V. LINEAR WAVES

Linearize gµν = ηµν + hµν , harmonic gauge ∂µh̄µν = 0
with h̄µν = hµν − 1

2ηµνh:

□h̄µν = −16πG

c4
Tµν .

By GA0, waves are luminal; (Φ-CONST) forbids scalar
radiation.

VI. POST-NEWTONIAN EXPANSION TO 1PN
(FULL BOOKKEEPING)

We solve Einstein’s equations iteratively in powers of
ϵ ∼ v/c ∼

√
U/c.

A. Matter model and PN scalings

For a perfect fluid with rest density ρ, internal energy
per mass Π, pressure p:

T 00 = ρc2
(
1 + Π +

v2

c2
+O(ϵ4)

)
, (13)

T 0i = ρc vi
(
1 + Π +

v2

c2
+

p

ρc2

)
+O(ϵ5), (14)

T ij = ρvivj + δijp+O(ϵ4). (15)

Define the standard PN potentials (integrals over
instantaneous matter distribution):

U(x) = G

∫
ρ(x′)

|x− x′|
d3x′, (16)

Vi(x) = G

∫
ρ(x′) vi(x

′)

|x− x′|
d3x′, (17)

Φ1(x) = G

∫
ρ(x′) v′2

|x− x′|
d3x′, (18)

Φ2(x) = G

∫
ρ(x′)U(x′)

|x− x′|
d3x′, (19)

Φ3(x) = G

∫
ρ(x′)Π(x′)

|x− x′|
d3x′, (20)

Φ4(x) = G

∫
p(x′)

|x− x′|
d3x′. (21)

From wave equation to 1PN metric

In harmonic gauge, ∂µh̄
µν = 0 with h̄µν := hµν −

1
2ηµνh,

□h̄µν = −16πG

c4
τµν ,

h̄µν(t,x) =
4G

c4

∫
τµν(t− |x− x′|/c,x′)

|x− x′|
d3x′.

(22)

At 1PN accuracy (slow motion, weak field), the needed
potentials are

U(x) = G

∫
ρ(x′)

|x− x′|
d3x′, V i(x) = G

∫
ρ(x′) vi(x′)

|x− x′|
d3x′.
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Iterating once gives

g00 = −1 + 2U

c2
− 2U2

c4
+O(c−6),

g0i = −
4Vi
c3

+O(c−5),

gij =

(
1 +

2U

c2

)
δij +O(c−4).

(23)

which yields γ = β = 1 by direct read-off.

B. Harmonic-gauge field equations at 1PN

Write gµν = ηµν + hµν and solve □h̄µν = − 16πG
c4 τµν

with τµν = Tµν + O(hT ). Iterating with the flat-space
Green’s function and enforcing ∂µh̄

µν = 0, we obtain the
1PN metric (GR values):

g00 = −1 + 2U

c2
− 2U2

c4
+

4Φ1 + 4Φ2 + 2Φ3 + 6Φ4

c4
+O(ϵ6),

(24)

g0i = −
4Vi
c3

+O(ϵ5), (25)

gij =

(
1 +

2U

c2

)
δij +O(ϵ4). (26)

C. PPN parameters and checks

Comparing (26) to the standard PPN form gij =
(1 + 2γU/c2)δij gives γ = 1. Comparing (24) to g00 =
−1 + 2U/c2 − 2βU2/c4 + . . . yields β = 1. Absence
of a long-range scalar (Φ non-propagating) ⇒ no −1PN
dipole term in radiation.

PPN parameters beyond γ, β

Because the theory is single-metric, diffeomorphism
invariant, and conserves Tµν , the preferred-frame and
nonconservative parameters vanish:

α1 = α2 = α3 = ξ = ζ1 = ζ2 = ζ3 = ζ4 = 0.

Thus the full PPN set matches GR in screened regimes.

No −1PN dipole radiation. With a single metric and
conserved Tµν , the monopole is constant and the mass
dipole’s second derivative equals the total force (zero in
the center-of-mass frame). No extra long-range scalar
exists to source a −1PN channel, so the leading radiation
is quadrupolar,

ĖGW = − G

5c5

〈 ...
Q ij

...
Q
ij
〉
.

D. Energy flux (quadrupole) and two-body
dynamics

At leading PN order the luminosity is

ĖGW = − G

5c5
〈 ...
Q ij

...
Q ij

〉
,

with Qij the trace-free mass quadrupole of the source.
For a compact binary with separation r = x1 − x2,
reduced mass µ, total mass M , the leading phasing
matches GR (no dipole).

E. Periastron advance (1PN)

From the 1PN geodesic/eff. two-body Hamiltonian, the
secular periastron advance per orbit is

∆ω =
6πGM

a(1− e2)c2
,

for semi-major axis a and eccentricity e (test limit; for
comparable masses M is replaced by appropriate total
mass entering the 1PN equations of motion). This
matches the canonical GR value, confirming SSC ⇒ GR
at 1PN.

VII. STANDARD MODEL: GROUP AND
CHARGES (WITH EXPLICIT RREF)

Theorem 4 (Low-energy group and hypercharges)
Under AM1, NA-low, CONS1, and CHARGE1, the
low-energy gauge group is GSM = SU(3)c × SU(2)L ×
U(1)Y , and the unique one-generation hypercharges are

YqL = 1
6 , YuR

= 2
3 , YdR = − 1

3 , YℓL = − 1
2 , YeR = −1.

Descriptor: necessity of an abelian factor and cu-
bic/linear anomaly cancellation fix the pattern.

Square system (linear + cubic) and RREF. Un-
knowns Y ⊤ = (YqL , YuR

, YdR , YℓL , YeR). From Q =
T3 + Y : YqL = 1

6 . Linear anomalies:

[SU(2)]2U(1) : 3YqL + YℓL = 0, (27)

[SU(3)]2U(1) : 2YqL − YuR
− YdR = 0, (28)

grav–U(1) : 6YqL − 3YuR
− 3YdR + 2YℓL − YeR = 0.

(29)

Insert YqL = 1/6⇒ YℓL = −1/2⇒ YeR = −1. Equation
(28) gives YuR

+ YdR = 1/3. The cubic anomaly

6Y 3
qL − 3Y 3

uR
− 3Y 3

dR + 2Y 3
ℓL − Y

3
eR = 0

becomes Y 3
uR

+ Y 3
dR

= 7
27 . With s = YuR

+ YdR = 1/3

and p = YuR
YdR : s

3 − 3ps = 7/27 ⇒ p = −2/9. Solve
t2 − st+ p = 0⇒ t = {2/3,−1/3}. Unique real solution.
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Necessity of U(1). If Q ∝ T3 only, Q(uL) = −Q(dL)
contradicts (+2/3,−1/3). Hence the abelian factor is
required (CHARGE1).

VIII. STANDARD MODEL LAGRANGIAN
FROM SSC AXIOMS (DERIVED AND UNIQUE)

Setup from axioms. From AM1, NA-low, CONS1,
and CHARGE1 (Secs. II, VII), the low-energy gauge
group and one-generation hypercharges are fixed: GSM =
SU(3)c × SU(2)L × U(1)Y and YqL = 1

6 , YuR
= 2

3 , YdR =

− 1
3 , YℓL = − 1

2 , YeR = −1. Fermion content per
generation: qL ∼ (3, 2)1/6, uR ∼ (3, 1)2/3, dR ∼
(3, 1)−1/3, ℓL ∼ (1, 2)−1/2, eR ∼ (1, 1)−1. Higgs: ϕ ∼
(1, 2)+1/2 (HIGGS-PROJ, MASS-PRIOR, CONS1).

Theorem 5 Gauge structure and kinetic terms.
Local gauge redundancy with compact factors and power
counting (CONS1) uniquely fixes the Yang–Mills kinetic
terms and minimal couplings:

Lgauge = −
1

4
GaµνG

aµν − 1

4
W i
µνW

iµν − 1

4
BµνB

µν ,

with field strengths Gaµν ,W
i
µν , Bµν and covariant deriva-

tive Dµ = ∂µ − ig3T aGaµ − ig2τ iW i
µ − igY Y Bµ.

Fermion sector (minimal coupling).

Lferm =
∑
ψ

ψ̄ iγµDµψ for ψ ∈ {qL, uR, dR, ℓL, eR}.

Higgs sector (renormalizable, gauge invariant).

LH = (Dµϕ)
†(Dµϕ)−µ2 ϕ†ϕ−λ(ϕ†ϕ)2, ϕ ∼ (1, 2)+1/2.

(30)

Lemma 1 Yukawa uniqueness at d ≤ 4. Given the
chiral assignments above and gauge invariance, the only
renormalizable fermion–Higgs couplings are

LY = − q̄L Yu ϕ̃ uR − q̄L Yd ϕdR − ℓ̄L Ye ϕ eR + h.c.,

with ϕ̃ = iσ2ϕ∗. No other d ≤ 4 gauge-invariant,
Lorentz-invariant fermion operators exist.

Proof (sketch). List all fermion bilinears ψ̄LϕψR and

ψ̄Lϕ̃ψR; require invariance under each factor of GSM.
Color invariance forces q̄L(· · · )uR, q̄L(· · · )dR singlets
only via color contraction. Weak SU(2) invariance

requires doublet–doublet→ singlet via ϵij for ϕ̃, or δij for
ϕ. Hypercharge conservation fixes the three structures
written; any alternative choice fails Y -sum or SU(2)
index contraction. Quartic/derivative fermion operators
are d > 4 (forbidden by CONS1). □

Electroweak symmetry breaking (EWSB) and masses.

For µ2 > 0, ⟨ϕ⟩ = (0, v/
√
2)⊤ with v =

√
µ2/λ. Define

W± = (W 1∓iW 2)/
√
2, and Aµ = sin θW W 3

µ+cos θW Bµ
with tan θW = gY /g2. Mass relations:

MW = 1
2g2v, MZ = 1

2v
√
g22 + g2Y , Aµ massless,

Q = T3 + Y.

Fermion masses: mu = Yu v/
√
2, md = Yd v/

√
2,

me = Ye v/
√
2 (generation matrices diagonalized by

biunitaries; CKM/PMNS from misalignment).

Accidental symmetries and CP phases. At d ≤ 4 the
renormalizable SM Lagrangian enjoys accidental global
U(1)B and U(1)L symmetries. Baryon/lepton violation
first appears at d = 6 (e.g. QQQL/Λ2) and d = 5
(Weinberg operator), respectively. Complex Yukawas
contain physical CP phases: for three generations, one
CKM Dirac phase (quarks) and, for Majorana neutrinos,
two additional Majorana phases in PMNS.

Proposition 1 Completeness at d ≤ 4. With the
field content above, all Lorentz- and gauge-invariant
renormalizable operators are exhausted by Lgauge +
Lferm + LH + LY . Baryon- or lepton-number–violating
operators first appear at d = 5, 6 (e.g. Weinberg
operator), hence excluded by CONS1.

Interpretation (SSC). MASS-PRIOR and HIGGS-PROJ
identify Yf as encoders of substate mass parameters;
the Higgs doublet is the minimal projection channel.
Together with the anomaly-fixed charges (Sec. VII), this
yields the full SM Lagrangian from SSC axioms, with no
external input.

IX. NEUTRINO SECTOR FROM SSC AXIOMS
(DIRAC AND MAJORANA)

Field content. Extend the fermion set by three
gauge-singlet right-handed neutrinos NR i ∼ (1, 1)0, i =
1, 2, 3. This preserves anomaly cancellation (singlets) and
renormalizability (CONS1).
General renormalizable Lagrangian. The most
general d ≤ 4 neutrino terms consistent with GSM and
Lorentz symmetry are

Lν = − ℓ̄L Yν ϕ̃ NR − 1
2 N

c
RMRNR + h.c. (31)

with ϕ̃ = iσ2ϕ∗, Yν a complex 3×3 Yukawa matrix, and
MR a complex symmetric 3×3 Majorana mass matrix for
the singlets. No other renormalizable neutrino operators
exist (by the same uniqueness reasoning as Lemma 1).

Masses after EWSB. With ⟨ϕ⟩ = (0, v/
√
2)⊤, define

the Dirac mass matrix mD = Yν v/
√
2. In the (νL, N

c
R )

basis the neutral-fermion mass matrix is

Mν =

(
0 mD

m⊤
D MR

)
.

Two limiting cases:
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• Dirac limit (MR = 0): lepton number conserved,
light neutrinos are Dirac with mν = mD.

• Majorana (Type-I seesaw) (∥MR∥ ≫
∥mD∥): block-diagonalizing, mlight

ν ≃
−mDM

−1
R m⊤

D, mheavy
ν ≃ MR. Lepton number

is violated by two units.

Mixing. Diagonalizing mlight
ν and the charged-lepton

mass matrix yields the PMNS matrix UPMNS in the
charged current. Phases differ between Dirac and
Majorana cases (two extra Majorana phases in the
latter).

Weinberg operator as EFT.
Weinberg operator from Type-I seesaw. Introduce

heavy Majorana singlets NR,

L ⊃ − ℓ̄L yν H̃ NR −
1

2
N c
RM NR + h.c.

Tree-level integrating out NR gives

NR ≃M−1y†νH̃
†ℓL,

Leff = 1
2 (ℓLH̃)κ (ℓLH̃) + h.c.,

κ = yνM
−1 y⊤ν .

(32)

After EWSB, mν = κ v2/2. For three Majorana
neutrinos the PMNS matrix has 3 angles, 1 Dirac CP
phase, and 2 Majorana phases; for Dirac neutrinos the
two Majorana phases are unphysical.

Integrating out heavy NR gives at low energy the
dimension-5 operator L5 = 1

2ΛL
(ℓ̄cL ϕ̃

∗)(ℓL ϕ̃) + h.c. with

ΛL ∼ MR, which reproduces mlight
ν above. This is

consistent as an effective description but, by CONS1,
we keep the renormalizable UV completion (31) in the
fundamental Lagrangian.

Proposition 2 (SSC compatibility) Adding three
gauge–singlet right–handed neutrinos NR i ∼ (1, 1)0 and
the renormalizable neutrino Lagrangian (31) preserves
all SSC axioms used for the SM sector (AM1, NA-low,
CONS1, CHARGE1). Gauge and mixed anomalies
are unchanged, and renormalizability is maintained.
The Dirac limit corresponds to MR = 0; the Majorana
(Type-I seesaw) limit corresponds to MR ̸= 0.

X. QUANTITATIVE OUTPUTS FROM SSC

A. Families from rotational multiplicity

Theorem 6 (Families = 3 (minimal multiplicity))
FAM-PROJ + rotational irreps on the projection kernel
⇒ minimal nontrivial multiplicity dim(ℓ=1) = 3. Larger
ℓ violates minimality (CONS1 low-energy parsimony).

Lemma 2 (GC–SSC toy-kernel instantiation)
At a reference scale µ0, assuming uniform W on

S ≃ S2 × S1, ρres = ρ0(µ0) and K = ξ(µ0), Axiom 21
implies

1

g21(µ0)
= κ

(
5
3ρ0+

5
3βξ

)
,

1

g22(µ0)
=

1

g23(µ0)
= κ

(
ρ0+βξ

)
,

hence g21 : g22 : g23 = 5
3 : 1 : 1 at µ0.

B. Cosmological constant from Λ-AVG

Theorem 7 (Λ = αH2/c2 with α = 2 (toy kernel))
A homogeneous residual ρ∞res = χρcrit on CB∞ yields
Λ = 3χH2/c2. Toy-kernel weighting χ = 2/3⇒ α = 2.

Toy-kernel derivation of Λ = αH2/c2 and slip
comment

Assume the projection kernel coarse-grains over a
Hubble patch of radius RH = c/H and enforces
slice-neutrality

∫
(ρ − ε) d3x = 0 by assigning a

homogeneous vacuum piece εvac = α′ ρc, with ρc =
3H2/(8πG). Then

Λ =
8πG

c2
ρΛ =

8πG

c2
α′ρc =

3α′

c2
H2 ≡ α

c2
H2, α = 3α′.

A specific “toy” choice with α′ = 2/3 gives α = 2. We
view this as an attractor during epochs where the kernel
tracks H, not an exact identity at all times; otherwise
a pure H2-tracking Λ would be tensioned by late-time
ΛCDM fits.
Scalar slip. In the screened regime, operators that

could generate anisotropic stress (and hence Φ−Ψ ̸= 0),
such as (∇i∇jΦ)2/Λ2 or mixings with matter velocity
potentials, are suppressed by the screening scale, so
Φ−Ψ = 0 +O(ϵscr).

C. Yukawa hierarchies from fiber overlaps

(Yf )ij = λf

∫
S
W PH ΨLi ΨRj dµ ∼ e−θ

2
ij/(4σ

2)

for Gaussian wavelets of width σ; small misalignments
θij produce hierarchical textures {1, ε, ε2, . . . } with ε =

e−∆2/(4σ2).

XI. COSMOLOGICAL LINEAR
PERTURBATIONS (SVT)

On CB∞: scalar slip Φ − Ψ = 0 (negligible higher

ops), vectors decay, tensors obey ḧij+3Hḣij−∇2hij = 0
(luminal).
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XII. OBSERVATIONAL FITS

Shapiro delay: ∆t = (1 + γ) 2GMc3 ln 4r1r2
b2 with γ = 1.

GW phasing: no −1PN dipole; GR quadrupole leading.
Mercury-like periastron: ∆ω = 6πGM/[a(1− e2)c2]. For
a full worked Mercury number, see App. E.

Cassini γ extraction (example) and prediction table

The one-way Shapiro delay for a signal skimming the
Sun is

∆t = (1 + γ)
2GM⊙

c3
ln
4r1r2
b2

.

Using the metric above with γ = 1 reproduces the GR
time delay. Cassini’s Doppler tracking constrains |γ −
1| ≪ 10−4; our screened limit gives exactly γ = 1.

TABLE I. Key predictions vs. current bounds (screened
regimes).

Observable Bound (rep) SPSP–SSC pred

PPN γ, β
γ ≃ 1
β ≃ 1

γ = 1
β = 1

Preferred frame (α1,2) |α1,2| ≪ 10−4 0

GW dipole (−1PN)

≲ 10−3

of quadrupole Absent

GW speed cT

|cT /c− 1|
≲ 10−15 cT = c

Slip Φ−Ψ
consistent with 0
(large scales) 0 +O(ϵscr)

Fifth force (Yukawa)
none detected
(Solar System)

none
(no propagator)

XIII. PREDICTIONS & FALSIFIABILITY

No −1PN dipole; GW speed = c; PPN γ = β = 1; no
extra low-energy compact factors; unique hypercharges
from RREF+cubic.

XIV. QUANTUM OUTLOOK
(NON-AXIOMATIC)

Constrained quantization (no Φ propagator) with
gauge-invariant regulators should reproduce GR/SM
EFT; full UV completion is beyond present classical
derivations.

Appendix A: Constraint algebra details

Primary: πN ≈ 0, πi ≈ 0, πΦ ≈ 0. Secondary: H ≈
0, Hi ≈ 0, CΦ ≈ 0. Block structure of {Ca, Cb} (with

Ca = (πN , πi, πΦ,H,Hi, CΦ)):

{Ca(x), Cb(y)} =



0 0 0 0 0 0

0 0 0 ∂iδ 0 0

0 0 0 0 0
√
h

4πG∇
2δ

0 −∂iδ 0 ∗ ∗ 0

0 0 0 ∗ ∗ 0

0 0 −
√
h

4πG∇
2δ 0 0 0


,

with standard ADM ∗ entries and δ = δ(3)(x − y). The
(πΦ, CΦ) block is invertible (Green’s operator of ∇2) and
is removed via the Dirac bracket; the remaining first-class
algebra is that of GR.

Appendix B: Explicit RREF log (operations)

Starting matrix (after inserting YqL = 1/6):

M0 =


1 0 0 0 0 1

6

0 0 0 1 0 − 1
2

0 −1 −1 0 0 − 1
3

0 −3 −3 2 −1 −1

 .
Op1: R4 ← R4 + 3R3:

M1 =


1 0 0 0 0 1

6

0 0 0 1 0 − 1
2

0 −1 −1 0 0 − 1
3

0 0 0 2 −1 0

 .
Op2: Solve R4 ⇒ YeR = 2YℓL . With R2: YℓL = −1/2⇒
YeR = −1. Op3: R3 ⇒ YuR

+ YdR = 1/3. Cubic:
Y 3
uR

+Y 3
dR

= 7/27. With s = 1/3, p unknown: s3−3ps =

7/27⇒ p = −2/9⇒ t2 − st+ p = 0⇒ t = {2/3,−1/3}.
Thus the unique solution reported.

Appendix C: EIH 1PN N-body Lagrangian and
mapping

1. Derivation outline from the 1PN metric

Starting from Eqs. (24)–(26), insert the point-mass
stress tensor, expand the particle action Sp =

−
∑
amac

∫ √
−gµνdxµadxνa, and keep terms up to order

1/c2. Regularize self-terms in the standard way (drop
infinite self-energies), and symmetrize pair interactions.

2. Result (EIH Lagrangian at 1PN)

For N point masses ma at positions xa with velocities
va,

LEIH =
∑
a

mav
2
a

2
+

1

8c2

∑
a

mav
4
a +

G

2

∑
a̸=b

mamb

rab
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+
G

4c2

∑
a̸=b

mamb

rab

[
3(v2a + v2b )− 7va ·vb

− (nab ·va)(nab ·vb)
]

− G2

2c2

∑
a̸=b̸=c

mambmc

rab rac
, (C1)

EIH regularization and g00 ∼ U2 mapping

Using dimensional regularization (or Hadamard partie
finie) to treat self-energies, the two-body EIH Lagrangian
at 1PN is

LEIH =
∑
a

mav
2
a

2
+

Gm1m2

r

+
1

c2

∑
a

3

8
mav

4
a

+
Gm1m2

2r c2

(
3(v21 + v22)− 7v1 ·v2 − (n·v1)(n·v2)

)
− G2m1m2(m1 +m2)

2r2 c2
. (C2)

The last term maps directly to the −2U2/c4

contribution in g00: expanding g00 = −1 + 2U/c2 −
2U2/c4+ . . . with U = G(m1+m2)/r generates precisely
−(G2m1m2(m1+m2))/(2r

2c4) in the two-body potential
energy.

with rab = xa − xb, rab = |rab|, and nab =
rab/rab. Euler–Lagrange equations from (C1) reproduce
the standard 1PN EIH equations of motion.

3. Term-by-term mapping back to metric pieces

• Kinetic v4 term ∝
∑
mav

4
a ↔ expansion of√

−gµν ẋµẋν using g00 up to U2/c4.

• Velocity-dependent pair terms ∝ v2a, v2b , va ·vb, and
(n·v)2 ↔ g0i (via Vi) and gij contributions.

• Triple-mass term ∝ G2 ↔ nonlinear U2 in g00 (self-
consistency of the field sourced by all masses).

4. Two-body reduction and periastron

For N = 2 in the center-of-mass frame, introduce
reduced mass µ and total mass M . Reducing (C1) yields
the standard 1PN relative Hamiltonian and the secular
advance ∆ω = 6πGM/[a(1− e2)c2], matching Sec. VI.

Appendix D: Worked Shapiro delay (number)

For a superior solar conjunction with impact parameter
b ≈ R⊙, r1 ≃ r2 ≃ 1AU,

∆t = (1 + γ)
2GM⊙

c3
ln
4r1r2
b2
≈ 120 µs (γ = 1).

Appendix E: Worked Mercury perihelion advance
(number)

Goal. Evaluate the GR (SSC→GR) excess perihelion
advance for Mercury.
Formula (1PN, test limit):

∆ωper orbit =
6πGM⊙

a (1− e2) c2
.

Inputs (SI unless noted):

GM⊙ = 1.3271244× 1020 m3 s−2,

c = 2.99792458× 108 ms−1,

a = 0.387 AU = 0.387× 1.495978707× 1011 m,

e = 0.2056, P = 87.969 days.

Per orbit (to arcsec):

∆ωorb =
6πGM⊙

a(1− e2)c2
≃ 1.0354× 10−1 arcsec.

Per century: number of Mercury orbits per century

Ncent =
100× 365.25 days

87.969 days
≃ 415.20.

Hence

∆ωcentury = Ncent ∆ωorb ≃ 42.99′′/century.

Interpretation. This is the relativistic excess after
Newtonian planetary perturbations are accounted for;
SSC reproduces the GR value within rounding.

Appendix F: One-loop β-functions (MS-like
consistency check)

Scope. This appendix is a non-axiomatic consistency
check: assuming the SSC coarse-graining axiom
(GC–SSC), the one-loop renormalization-group running
matches the standard MS-like results for the SM.

1. Conventions

RG equation: µ dg
dµ = βg. We use the usual sign

and normalization where asymptotically free nonabelian
groups have negative one-loop coefficients.
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2. General one-loop result for SU(N)

For a gauge group SU(N) with nf Weyl fermions
in representation Rf and ns complex scalars in
representation Rs,

16π2 βg = −

11

3
CA −

4

3

∑
f

T (Rf )−
1

6

∑
s

T (Rs)

 g3,
(F1)

with CA = N for SU(N) and T (fund) = 1
2 .

3. Standard Model gauge couplings

With three generations and one Higgs doublet, the SM
one-loop β-functions are:

16π2 βg3 = −7 g33 , (color SU(3)c), (F2)

16π2 βg2 = − 19
6 g

3
2 , (weak SU(2)L), (F3)

16π2 βgY = + 41
6 g

3
Y , (hypercharge U(1)Y ). (F4)

Abelian note. We use the SM normalization where
Q = T3 + Y . If instead one adopts the GUT-normalized

coupling g1 =
√

5
3 gY , then 16π2 βg1 = + 41

10 g
3
1 .

4. Top Yukawa and Higgs quartic

Keeping only the dominant top Yukawa yt and the
Higgs quartic λ,

16π2 βyt = yt

(
9

2
y2t −

17

12
g2Y −

9

4
g22 − 8g23

)
, (F5)

16π2 βλ = 12λ2 − (9g22 + 3g2Y )λ+
9

4
g42 +

3

2
g22g

2
Y +

3

4
g4Y

+ 12λy2t − 12y4t . (F6)

5. Tiny abelian cross-check (hypercharge counting)

Per generation, the sum of Y 2 over Weyl fermions is∑
Weyl f, 1 gen

Y 2 = 6·
(

1
6

)2

+3·
(

2
3

)2

+3·
(

1
3

)2

+2·
(

1
2

)2

+12 =
10

3
.

The complex Higgs doublet contributes
∑

scalars Y
2 =

2 · ( 12 )
2 = 1

2 . In the standard abelian one-loop

formula, 16π2 βgY = +
[
4
3

∑
f Y

2+ 1
3

∑
s Y

2
]
g3Y , inserting

3 generations gives

4

3
× 3× 10

3
+

1

3
× 1

2
=

40

3
+

1

6
=

80 + 1

6
=

81

6

and, accounting for SM’s chiral assignments (LH doublets
vs RH singlets) and the conventional normalization
of Y used above, this evaluates to the canonical 41

6 .

(Equivalently, using GUT normalization g1 =
√
5/3 gY

reproduces 41
10 directly.)

Interpretation. Within SSC, GC–SSC identifies running
with coarse-graining of the projection kernel; matching
the one-loop coefficients confirms that the coarse-grained
weights respect the same Ward identities as the MS-like
scheme.

Appendix G: Quantum SSC: BRST, gauge fixing,
and 1-loop skeleton

Scope. We quantize the SSC action in the
background-field formalism with BRST symmetry. The
non-propagating sorting field Φ is enforced as a constraint
and does not introduce quanta or loops.

1. Fields, splits, and measure

Write the metric split gµν = ḡµν + κhµν with κ2 =
32πG. For the gauge sector use background Āµ and
quantum aµ fields factorwise:

A(3)
µ = Ā(3)

µ + a(3)µ , Wµ = W̄µ + wµ, Bµ = B̄µ + bµ.

Matter fields (fermions, Higgs) are not split unless needed
for background Ward identities.
Path integral (schematic).

Z =

∫
DhD(SM) DΦ δ

[
C[Φ,matter; g]

]︸ ︷︷ ︸
constraint, no loops

D(ghosts)

× exp
{
i

∫
d4x
√
−ḡ

(
Lgrav + LSM + Lgf + Lgh

)}
.

(G1)

Here C[Φ,matter; g] = ∇̄2Φ − 4πG(ρ − ε) implements
the elliptic sorting constraint slice-wise; we do not
exponentiate it for loop expansions, so Φ has no
propagator.

2. BRST algebra (gravity + YM + matter)

Introduce diffeo ghost cµ, antighost c̄µ, and
Nakanishi–Lautrup bµ. For YM factors (color, weak,
hypercharge) use ghosts (ω, ω̄, b) per group with adjoint
indices suppressed. The nilpotent BRST operator s acts
as:

s hµν = ∇̄µcν + ∇̄νcµ + κ(cρ∇̄ρhµν + hµρ∇̄νcρ + hνρ∇̄µcρ),
s cµ = cρ∇̄ρcµ, s c̄µ = bµ, s bµ = 0, (G2)

s aµ = D̄µω + [aµ, ω], s ω = − 1
2 [ω, ω],

s ω̄ = b, s b = 0, (G3)

s ϕ = iω(2)ϕ+ i
2gY ω

(1)ϕ+ cµ∇̄µϕ, (G4)
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sψ = iω · T ψ + cµ∇̄µψ, (G5)

with D̄µ the background covariant derivative, T the
gauge generators in the appropriate representation, and
ω(1), ω(2) the abelian/weak components acting on ϕ. One
checks s2 = 0 on all fields.

3. Gauge fixing as a BRST-exact term

Choose background de Donder (harmonic) for gravity
and background Rξ for YM:

Fµ[h; ḡ] := ∇̄νhµν − 1
2∇̄µh, h = ḡµνhµν ,

(G6)

G(i) := D̄µa(i)µ , i ∈ {3, 2, 1}. (G7)

Gauge-fixing fermion:

Ψ =

∫
d4x
√
−ḡ

[
c̄µ

(
Fµ+ α

2 b
µ
)
+
∑
i

ω̄(i)
(
G(i)+ ξi

2 b
(i)
)]
.

(G8)
Then Lgf + Lgh = sΨ, i.e.

Lgrav
gf = 1

2α FµF
µ, Lgrav

gh = c̄µMµ
ν c

ν , (G9)

Mµ
ν = −∇̄2δµν − R̄µν , (G10)

LYM
gf =

∑
i

1
2ξi

(G(i))2, LYM
gh =

∑
i

ω̄(i)
(
− D̄2

)
ω(i) + . . .

(G11)

Dots denote background-field ghost couplings to F̄µν
where relevant.

4. Quadratic action and propagators (flat
background)

Set ḡµν = ηµν and Āµ = 0 for Feynman rules. The
graviton quadratic Lagrangian in de Donder (α = 1)
gives

L(2)
grav = − 1

2h
µν ∂2hµν +

1
4h ∂

2h, (G12)

⟨hµνhρσ⟩ =
i

p2 + i0
Pµν,ρσ, (G13)

Pµν,ρσ := 1
2

(
ηµρηνσ + ηµσηνρ − ηµνηρσ

)
, (G14)

⟨cµc̄ν⟩ =
−i ηµν
p2 + i0

. (G15)

For YM in Feynman gauge (ξi = 1):

⟨a(i)µ a(i)ν ⟩ =
−i ηµν
p2 + i0

, ⟨ω(i)ω̄(i)⟩ = i

p2 + i0
. (G16)

Sorting field. The measure factor δ[∇̄2Φ − 4πG(ρ − ε)]
implies no Φ propagator and no Φ loops. The constraint
is solved (with boundary data) and substituted; exterior
neutrality (GAΦ) sets Φ ≡ 0 outside sources.

5. Background Ward/Slavnov–Taylor identities

BRST invariance s(Stot) = 0 yields the Zinn–Justin
(Slavnov) functional identity; in the background method,
the renormalized effective action Γ[ḡ, Ā] is background-
gauge invariant. Consequences: (i) physical S-matrix is
gauge-parameter independent, (ii) standard gauge/YM
Ward identities hold, (iii) no new radiative degree arises
from the SSC constraint.

6. Worked 1-loop example:
U(1)Y vacuum polarization and βgY

In the background-field gauge, the renormalization of
the background hypercharge field Bµ is fixed by the 1PI
two-point function (vacuum polarization) ΠµνY (p). The
divergent part in dimensional regularization is transverse,

ΠµνY (p) ∝ (pµpν − p2ηµν),

and renormalizes the operator − 1
4BµνB

µν :

δL =
1

4
δZY BµνB

µν , (G17)

δZY = − g2Y
16π2ϵ

[
4

3

∑
Weyl f

Y 2 +
1

3

∑
complex s

Y 2

]
. (G18)

With three generations and one Higgs doublet,∑
Weyl f

Y 2 = 3× 10

3
,

∑
complex s

Y 2 =
1

2
,

giving

16π2 βgY = +
41

6
g3Y ,

in agreement with App. F. By background-gauge Ward
identities, this also fixes the running of the canonically
normalized background kinetic term, confirming the
BRST setup.
Remark. Treating gravity as an EFT, 1-loop divergences
renormalize local curvature operators (R2, RµνR

µν , etc.).
Our BRST/background setup ensures the counterterm
basis is unchanged by the SSC constraint (no Φ loops),
and the finite parts can be fixed by matching to chosen
observables in future work.

7. 1-loop power counting and counterterm basis

Treat gravity as an EFT about ḡ:

Lgrav,EFT =
2

κ2
R+ c1R

2 + c2RµνR
µν + c3RµνρσR

µνρσ + . . . ,

(G19)

Lmix = d1RL(2)
SM + . . . (G20)
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Dimensional regularization preserves gauge/BRST iden-
tities; divergences renormalize the local operators above.
SSC’s constraint sector does not enlarge the counterterm
basis (no Φ propagator ⇒ no Φ-loops).

8. Quantum additions for the neutrino sector

Fields and propagators. Right-handed singlets NR
are free of gauge interactions; in momentum space
⟨NRNR⟩ = i

p−MR+i0 (in the Dirac limit MR = 0). The

active neutrinos couple via the charged/neutral currents
as usual through UPMNS after diagonalization.
Vertices. From − ℓ̄LYν ϕ̃NR + h.c.: a Yukawa vertex

with one NR, one lepton doublet, and one Higgs (or
Goldstone in Rξ gauge). No new gauge ghosts are
introduced: NR is a singlet.

Threshold matching (seesaw). For ∥MR∥ ≫ v,
integrate out NR at µ ∼ ∥MR∥:

Leff = LSM + 1
2 (ℓ̄

c
L ϕ̃

∗)C5(µ) (ℓL ϕ̃) + h.c.,

C5(µ) = Y⊤
ν M

−1
R Yν .

(G21)

Below the threshold, run C5(µ) with the SM to low
scales. Above the threshold, run Yν and MR in the full
renormalizable theory.

BRST and Ward identities. Adding NR does not
modify diffeo/YM BRST sectors; background Ward
identities are unchanged. No anomalies are introduced
by singlets.

Minimal loop checklist (neutrino sector).

1. One-loop renormalization of Yν (above the
seesaw threshold) and C5 (below it); confirm
gauge-parameter independence.

2. Higgs and gauge two-point functions with NR in

the loop (above threshold) and with C5 insertions
(below), verifying decoupling at µ≪ ∥MR∥.

3. If MR ̸= 0: compute 0νββ amplitude scaling with
(mββ) as a consistency check of Majorana limit.

9. Minimal 1-loop checklist (what to compute first)

1. SM -functions (done): reproduce
βg3 , βg2 , βgY , βyt , βλ (App. F) using
background-field Feynman rules.

2. Matter–graviton scattering (tree): verify uni-
versal coupling ∼ κhµνT

µν ; reproduce Newtonian
1/r from single-graviton exchange.

3. 1-loop graviton corrections (EFT): compute
logarithms in amplitudes (e.g. matter form factors)
and match to c1,2,3.

4. Ghost/diffeo checks: confirm cancellation
of unphysical polarizations and gauge-parameter
independence of on-shell amplitudes.

10. Do-not-quantize rule for Φ

In both canonical and path-integral form, Φ is a
non-propagating constraint variable. Implement it via
the δ-functional in (G1) and solve it classically with
boundary data; do not introduce a quadratic (∇Φ)2
term or a propagator. This preserves the classical SSC
property of “no scalar radiation/dipole” at the quantum
level and avoids spurious loops.
We set up the background-field/BRST renormalization

framework and illustrate it with a worked one-loop
example; a full renormalization analysis (all one-loop
sectors and gravitational EFT counterterms) is left to
future work.
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