Solar-System Validation from SPSP–SSC

Executive statement. In SPSP–SSC the sorting potential \(\Phi\) is an elliptic constraint ( no kinetic term ), and projection terms are screened in high-density/near-source environments. Hence in the Solar System the field equations reduce to Einstein’s equations with metric coupling only. The Parametrized Post-Newtonian (PPN) parameters are therefore \(\gamma=\beta=1\) and all others vanish, so every classic GR test (perihelion advance, light-deflection, Shapiro delay, redshift, geodetic/frame-dragging) is recovered exactly.

1. From the SPSP–SSC action to the exterior field equations

Start from the validated-regime SPSP–SSC action (your Part 1/Section 4 form):

\[ S=\int d^4x\,\sqrt{-g}\,\Big[\tfrac{M_P^2}{2}R+\mathcal L_{\rm SM} -\,\Phi\,(\rho-\varepsilon)\Big]\;+\;S_{\rm proj}^{\rm (screened)}. \]

1.1 PPN catalogue from the action

Expanding the metric in PPN gauge to \(\mathcal O(v^4)\) under these assumptions gives (as in your Appendix F):

\[ \boxed{\;\gamma=1,\quad\beta=1,\quad \xi=\alpha_1=\alpha_2=\alpha_3=\zeta_1=\zeta_2=\zeta_3=\zeta_4=0\;}. \]

This alone fixes the Solar-System phenomenology to GR values, because the classic observables depend only on \(\gamma\) and \(\beta\) (at the orders of interest): perihelion \(\propto (2+2\gamma-\beta)\), light bending \(\propto (1+\gamma)\), Shapiro delay \(\propto (1+\gamma)\).

2. Spherically symmetric exterior metric

With \(G_{\mu\nu}=0\) outside the Sun, the unique static, spherically symmetric vacuum solution is Schwarzschild:

\[ ds^2=-\Big(1-\frac{2GM_\odot}{rc^2}\Big)c^2dt^2 +\Big(1-\frac{2GM_\odot}{rc^2}\Big)^{-1}dr^2+r^2(d\theta^2+\sin^2\theta\,d\phi^2). \]

All Solar-System predictions below follow directly from geodesics of this metric (or, equivalently, from PPN with \(\gamma=\beta=1\)).

3. Perihelion advance (derivation)

Restrict to the orbital plane \(\theta=\pi/2\). Using specific angular momentum \(h=r^2\dot\phi\) and \(u\equiv 1/r\), the geodesic equations reduce to the relativistic Binet equation (standard GR result, now justified by the reduction above):

\[ \frac{d^2u}{d\phi^2}+u=\frac{GM_\odot}{h^2}+\frac{3GM_\odot}{c^2}u^2. \]

Treat the \(u^2\) term as a small perturbation to the Newtonian solution \(u_0=\frac{GM_\odot}{h^2}(1+e\cos\phi)\). Solving to first order in \(GM_\odot/(ac^2)\) gives a small advance of the perihelion per orbit:

\[ \boxed{\;\Delta\varpi_{\rm per\,orbit}=\frac{6\pi GM_\odot}{a(1-e^2)c^2}\;}. \]

Converting to arcseconds per century with Mercury’s \(a,e,P\) yields \(\approx 43''/\text{century}\), matching observation once Newtonian planetary perturbations are subtracted. (Your numerical table in the Solar-System page reproduces Mercury, Venus, Earth, Mars.)

4. Light deflection (derivation)

In the weak-field limit, the PPN result for a light ray with impact parameter \(b\) is

\[ \Delta\phi=\frac{1+\gamma}{2}\,\frac{4GM_\odot}{b\,c^2}\;\;\xrightarrow{\ \gamma=1\ }\;\frac{4GM_\odot}{b\,c^2}. \]

At the solar limb (\(b\simeq R_\odot\)), this yields \(\Delta\phi\simeq 1.751''\), the classic Eddington value. Because SPSP–SSC fixes \(\gamma=1\), the prediction is exactly GR’s.

5. Shapiro time delay (derivation)

For emitter at \(r_E\) and receiver at \(r_R\) with closest approach \(b\), the PPN time delay along a null geodesic is

\[ \Delta t=\frac{1+\gamma}{2}\,\frac{2GM_\odot}{c^3} \ln\!\left(\frac{4\,r_E r_R}{b^2}\right)\;\;\xrightarrow{\ \gamma=1\ }\;\frac{2GM_\odot}{c^3} \ln\!\left(\frac{4\,r_E r_R}{b^2}\right). \]

With \(r_E\simeq 1\,\text{AU}\), \(r_R\simeq 1.5\,\text{AU}\), \(b\simeq R_\odot\), one finds \(\Delta t\sim 10^2\,\mu\text{s}\), consistent with Cassini-level confirmations. Again SPSP–SSC gives the GR value because \(\gamma=1\).

6. Why SPSP–SSC must agree with GR here

Remarks on scope & falsifiability