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We present SPSP–SSC as a program that seeks to connect classical gravity, the Standard
Model, and cosmology through a single projection kernel W (x, σ) on a compact internal space.
Contributions here are: (i) an axiomatization with rigorous recoveries where available (EH+GHY
action, ADM/Dirac constraints, anomaly-fixed hypercharges); (ii) a numerical solution of the
stationary kernel on S3 and a derived–W overlap pipeline that reproduces CKM magnitudes
without hand-imposed textures; (iii) an explicit one-loop Higgs calculation using a derived form
factor FW , yielding a finite bound |δm2

H | ≤ C/(16π2ℓ2res) with C = O(10−1); and (iv) a clear
separation of consistency checks (PPN γ=β=1, cGW=c, etc.) from claims of novelty. The
work remains programmatic: open items include kernel solutions in physical spacetimes (e.g.
static sources), BRST/Slavnov–Taylor checks and β-function matching, CP violation/PMNS fits, a
rigorous strong-CP analysis, and cosmological tests. We provide compact numerical procedures and
a concrete roadmap to enable independent scrutiny.
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I. INTRODUCTION AND NOTATION

The Single-Point Super-Projection / Single-Sphere
Cosmology (SPSP–SSC) models observed physics as
a projection of a multi-dimensional quantum sphere.
Gravity arises from the core intrinsic–resolution state
of the base dynamics; the vacuum is the corresponding
resolution flow that updates at the universal speed c. A
scalar Φ is a constraint (no kinetic term), enforcing local
balance between mass-like and energy-like contents.
Notation. Spacetime indices µ, ν = 0..3; spatial i, j =

1..3; signature (−+++).
√
−g is the metric density; hij

the ADM 3-metric. We keep explicit c,G until internal
normalization is fixed. All proofs cite axioms by label.
Scope and claims policy. Results in this paper

are labeled as proved (derivations from axioms),
demonstrated (numerical/algorithmic), or hypothe-
sized (programmatic proposals). In particular:

• Proved: EH+GHY action, ADM/Dirac algebra,
anomaly-free hypercharges.

• Demonstrated: stationary S3 kernel solver
(methods), non-toy overlap construction, SM-like
RG trajectories and stability maps.

• Hypothesized: fully explicit kernel solutions
in physical settings (W (x, σ) beyond symmet-
ric/zonal), quantitative CKM/PMNS fits, 1-loop
Higgs naturalness in SSC, falsifiable cosmology,
quantum completion.

This policy governs language throughout (“prediction”
vs “consistency check”).
Status at a glance.

• Gravity (EH+GHY, ADM): Proved.
Sec. IV,V.

• SM charges (hypercharge): Proved. Sec. VIII.

• Kernel numerics on S3: Demo. App. A.

• Overlaps from W : Demo. Sec. XI.

• RG + stability: Demo. Sec. XIV.
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• Quantum framework: Hyp.. Sec. XVI.

• Higgs naturalness: Hyp.. Sec. X.

• Cosmology: Hyp.. Sec. XVII.

Roadmap. Phase 1 (kernel in a physical setting):
solve Eq. (13) for a static spherically symmetric source,
quantify errors, and use the resulting W to recover U(r)
from GA2. Phase 2 (first quantitative target):
feed the derived W into one fermion sector to obtain
a concrete Yukawa spectrum/mixing with uncertainties.
Phase 3 (data & quantum): refine cosmological
modeling to a falsifiable observable and perform a
1-loop SSC calculation (BRST) to establish quantum
consistency.

II. AXIOMS

Axiom 1 (SSC-BASE) Multi-dimensional quan-
tum sphere, no true boundary. The physical
substrate is a compact, boundary-less “quantum sphere”
Sbase with effectively unbounded internal variability. It
admits a global self-identification (Klein-like inversion),
so descriptions that appear to refer to an “outside”
can be re-expressed within Sbase. No external
medium or absolute background exists; all observables
arise as projections of structures internal to Sbase.
Interpretation: the base is topologically closed and
self-contained; there is no physical edge to cross.

Axiom 2 (SSC-4D-PROJ) 4D projection strata
from twist/density. Regions of enhanced resolution
density and twist within Sbase generate 4D projection
strata (M, g). Our observed 3+1 spacetime is a
local projection patch of such a stratum. The metric
g and its curvature encode the kinematics of this
projection. Notes: multiple strata can exist; gluing
between patches respects induced metric continuity up to
standard junction conditions.

Axiom 3 (INS/OUT-DUAL) Inside vs. projec-
tion is a gauge choice. Describing observers as
inside Sbase or as living on a projection of it are
empirically equivalent descriptions. Only projection
data are observable; “inside/outside” language is a
representational redundancy.

Axiom 4 (PR-MAP) Local normalized
projection. There exists a surjective, measurable
projection map assigning observables by a normalized
fiber average:

O(x) =
∫
S
W (x, σ)Omicro(σ) dµ(σ), (1)∫

S
W (x, σ) dµ(σ) = 1. (2)

Here σ indexes micro-states on the fiber S with
measure dµ; W ≥ 0 is local in x, smooth in admissible
domains, and invariant under reparametrizations of σ.

Axiom 5 (UNI-MET) Universality & locality
(single metric coupling). All matter and gauge fields
couple locally and minimally to a single spacetime metric
g. No second metric, preferred foliation, or long-range
additional tensor/scalar/vector background is allowed at
the fundamental level. Consequence: metric dynamics
alone governs free fall (equivalence principle).

Axiom 6 (Φ-CONST) Sorting field is a constraint
(non-propagating). A scalar Φ enforces slice-wise
balance between mass-like and energy-like contents via an
elliptic constraint. In the action, Φ appears only as a
Lagrange multiplier term −Φ(ρ − ε); there is no kinetic
term and no (∇Φ)2. On spatial slices Σt, Φ solves

∇2Φ = 4πG (ρ− ε)

with admissible (Dirichlet/Neumann/Robin) boundary
data. Φ carries no radiative degree of freedom.

Axiom 7 (GR-Ω) Gravity = phenomenon of
propagating intrinsic–resolution. Gravity is not a
separate substance: it is the phenomenon incurred by the
propagation of the core intrinsic–resolution state of the
base quantum sphere across the vacuum. The vacuum
acts as the resolution field (see VAC-Ωc) that updates at
the universal speed c; spacetime curvature gµν encodes
the cumulative geometric effect of this propagation.
Locality and diffeomorphism invariance follow from this
resolution origin, and the tensorial degrees of freedom
are the projected modes of the propagating resolution
state.

Axiom 8 (VAC-Ωc) Vacuum = intrinsic resolu-
tion field at speed c. The vacuum is the uniform
intrinsic resolution field that carries the propagation of
the core resolution state. Its characteristic update speed
is c, and all propagating disturbances (photons, tensor
gravitational waves, etc.) ride on this field, sharing
the same luminal characteristic cone. Remark: “light
travels” is shorthand for “the intrinsic resolution field
updates at speed c”.

Axiom 9 (GA0) Global-resolution causality (sin-
gle luminal cone). All radiative characteristics
coincide with the luminal cone defined by c. No
superluminal or subluminal long-range propagator exists
for fundamental interactions. The constraint field Φ
never radiates (no wave operator acting on Φ).

Axiom 10 (GA2) Flux = content
(internal normalization of G)

For any large enclosing surface SR in a near-flat patch,∮
SR

(resolution flux)·dA⃗ =

∫
int(SR)

(resolution content) d3x,

where the flux is the geometric flux generated by the
propagation of the intrinsic resolution state across the
vacuum, and the content includes density and curvature
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contributions. This equality fixes the overall coupling in
the gravitational action, determining G internally (with
no external Newtonian matching).

Axiom 11 (GAΦ) Exterior neutrality of Φ (no
scalar hair/dipole). If supp(ρ − ε) is enclosed by a
smooth 2-surface S with homogeneous boundary data for
Φ and decay at infinity, the unique exterior solution is
Φ ≡ 0. Hence Φ contributes no long-range field, no scalar
hair, and no −1PN dipole radiation.

Axiom 12 (CB∞) Expanding foliation (no exter-
nal edge). On the largest scales, the projection stratum
admits an expanding point-cloud foliation. Localized
systems are treated in near-flat patches glued consistently
to this foliation. There is no physical spatial edge to the
universe.

Axiom 13 (GV1) Universal validity (no screen-
ing window). The same equations obtained from the
action apply across curvatures and densities; there is
no regime where different fundamental equations replace
them. (Effective expansions are allowed but do not
change the underlying equations.)

Axiom 14 (AM1) One visible U(1); extra abelian
factors are heavy/hidden. At long range there is a
single visible abelian gauge factor. Any additional U(1)s
(if present) are Higgsed/Stückelberg-ed at high scales,
leaving no extra long-range vector force.

Axiom 15 (NA-low) UV group allowed; low en-
ergy = SU(3)× SU(2)×U(1). While a UV unification
may exist, the low-energy unbroken compact factors are
color SU(3), weak SU(2), and the visible U(1) of AM1.
No extra compact factor remains light without additional
matter/Higgs that would violate CONS1.

Axiom 16 (CONS1) Admissible matter/gauge
sets: anomaly-free and renormalizable. Any
acceptable low-energy content must satisfy: (i)
cancellation of all gauge and mixed anomalies per
generation ( SU(3)2U(1), SU(2)2U(1), U(1)3, and
gravitational–U(1) ), and the global SU(2) (Witten)
constraint; (ii) interactions are renormalizable (operator
dimension ≤ 4).

Axiom 17 (CHARGE1) Photon charge rule. Af-
ter electroweak breaking, the massless photon generator
is the linear combination Q = T3 + Y , where T3 is
the diagonal SU(2) generator and Y the U(1) generator
(with conventional normalization). This fixes the weak
hypercharges once the electric charges are identified.

Axiom 18 (MASS-PRIOR) Mass values pre-exist
in the substate; projection preserves them.
Rest-mass parameters are features of the underlying
SSC substate. The projection does not create mass; it
encodes pre-existing mass parameters into the effective
Lagrangian.

Axiom 19 (HIGGS-PROJ) Higgs as projection
channel (not origin of mass). The Higgs doublet
is the minimal projection channel that encodes substate
masses via renormalizable Yukawa couplings. Yukawa
matrices are encoders (overlap integrals on the fiber), not
sources of mass.

Axiom 20 (FAM-PROJ) Families from projec-
tion multiplicity. The number of fermion families
equals the multiplicity of distinct SSC substates that
project to the same low-energy charge pattern. Minimal
nontrivial multiplicity corresponds to three families
(linked to the ℓ=1 rotational irrep on the fiber).

Axiom 21 (GC-SSC) Gauge strengths from SSC
geometry; running as coarse-graining. At
renormalization scale µ,

1

g2i (µ)
= κ

〈
Pi(σ)

[
ρres(x, σ) + βK(x, σ)

]〉
µ
,

where Pi projects the i-th gauge channel on the
fiber, ρres is the resolution-density, K a scalar
curvature on the projection stratum, κ is fixed by GA2
(same normalization that fixes G), and ⟨·⟩µ denotes
coarse-graining to scale µ. RG running corresponds to
the µ-dependence of this coarse-graining and reproduces
standard one-loop β-functions.

Axiom 22 (Λ-AVG) Cosmological constant as a
residual of intrinsic resolution. After GA2 neutral
subtraction on the expanding foliation (CB∞), a small,
homogeneous baseline of the intrinsic resolution field
remains. This residual enters the large-scale Einstein
equations as an effective cosmological constant Λ, scaling
as Λ = αH2/c2 when the residual tracks a fixed fraction
of the critical density. The coefficient α is set by SSC
weighting of the intrinsic resolution dynamics.

Axiom 23 (GYR–Φ) Elliptic constraint as gyro-
scopic neutralizer of topological charge. The
non-propagating elliptic scalar Φ enforces slice-wise
balance not only between mass-like and energy-like
content but also against gauge–invariant topological
charge densities. When extended as

Ssort →
∫
d4x
√
−g
[
− Φ

(
(ρ− ε) + ξQtop

)]
. (3)

with

Qtop =
1

32π2
Gaµν G̃

aµν . (4)

the neutrality principle GAΦ requires that the global
projection of Qtop vanish in screened regimes. Thus
the effective strong–CP angle is dynamically neutralized,
θeff → 0, while local topological fluctuations remain.
This removes the strong–CP problem without introducing
new propagating fields, leaving the CKM phase of weak
interactions intact.
CP assignment. In screened regimes Φ projects as

a CP–odd scalar so that ΦQtop is CP–even; thus the
extension preserves CP at the level of the action.
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Theorem 1 (Exterior neutrality removes strong–CP)
With the extended source Ssort ⊃ −

∫√
−gΦ(ξQtop)

and GAΦ (vanishing exterior projection of Qtop), the
effective gauge vacuum angle is dynamically neutralized:
θeff → 0, while local topological fluctuations persist.

[Sketch] Varying w.r.t. Φ enforces
∫
ext

√
−gQtop = 0 in

screened regimes. A constant θ becomes unobservable
(can be shifted by the constraint) leaving θ̄ = θ +
arg detMq → 0 after the standard anomalous U(1)A
rephasing. No new propagating fields are introduced; CP
is preserved at the action level by the CP assignment of
Φ and Qtop.

Status. The Φ–constraint with exterior neutrality
provides a candidate resolution of strong CP in SSC. A
full phenomenological development (e.g., neutron EDM
forecasts and UV sensitivity) is deferred to future work.

Axiom 24 (ANG–POS) Angular positioning of
the Higgs under projection. Projection preserves
one global angular mode of the singular substrate.
The projection kernel W (x, σ) locks this preserved
mode uniformly across the observable domain, so that
long-wavelength gradients in that direction vanish after
coarse-graining. The Higgs doublet is the unique
low-energy carrier of the preserved mode. As a result, the
leading hard sensitivity of the Higgs mass parameter to
ultraviolet fluctuations is projected out at leading order;
residual electroweak and Yukawa effects set the observed
light mass without introducing new propagating fields.

Status. The angular-locking mechanism for Higgs
naturalness is a hypothesis in this version. A dedicated
1-loop computation of δm2

H in the SSC form factor and
its residual scheme dependence is left to future work.

UV link. At finite resolution ℓres the projected
graviton propagator acquires the kernel form factor
of Eq. (85), suppressing large-k contributions to loop
integrals. In the Higgs sector this implements the
angular-locking hypothesis as a calculable cutoff profile
FW (kℓres), turning quadratic sensitivity into a finite,
ℓres–controlled correction. A full one–loop evaluation of
δm2

H with this form factor is deferred to future work.
Scope. The curves in Fig. 1 are an illustration of SSC’s
UV softening using simple kernels; they do not replace a
full, renormalized 1-loop computation in the SSC scheme.
All bounds quoted from this figure should be regarded as
indicative until the complete calculation is provided.

Axiom 25 (ZETA–POS) Critical-line inheritance
by the projection kernel. The projection kernel
W (x, σ) inherits an analytic symmetry from a substrate
critical line. (i) A single global angular mode is preserved
on projection and locked uniformly across slices under
coarse-graining; (ii) modes reflected across the line are
substrate-paired (particle/antiparticle). The preserved
mode is assigned to the Higgs doublet (by minimality),
while topological pairing supports CP neutrality via the
Φ-constraint.
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FIG. 1. Illustration (toy 1-loop): relative Higgs mass
correction ∆m2

H(ℓres)/∆m2
H |SM when loop propagators are

dressed by FW (kℓres) (Gaussian and Lorentzian examples).
The effect turns quadratic sensitivity into a finite,
ℓres–controlled correction without altering low-energy fits.
Curves are normalized to a fixed hard cutoff in the SM-like
reference and shown only as kernels’ shape exemplars.

Notation and conventions (quick reference). We use
xµ for spacetime, σA on S ≃ S3, dΩ = 4π sin2 χdχ
(zonal), ∆σ = sin−2 χ∂χ(sin

2 χ∂χ), and W > 0 with∫
S W dΩ = 1. Norms and divergences: ∥f∥2L2(dΩ) =∫
f2 dΩ, KL(p∥q) =

∫
p ln(p/q) dΩ. We write dx for dx,

Tr for traces, and use c = ℏ = 1 units unless stated.

III. PROJECTION KERNEL FROM AXIOMS

Lead-in. From the axioms in Sec. II it follows that
the projection from the substrate to observed spacetime
must be mediated by a well-defined weighting function,
or kernel, which enforces normalization, causality, and
flux–content balance. We therefore introduce the kernel
formalism as the natural bridge between the abstract
axiom system and the concrete physical predictions that
follow.

A. Definition and interpretation

Definition 1 (SSC projection kernel) Let S denote
the measurable fiber (subset of the base Sbase) equipped
with measure dµ(σ), and let (M, g) be a projection
stratum. An SSC projection kernel is a nonnegative
function W :M×S → R≥0 such that for all admissible
spacetime points x ∈M:∫

S
W (x, σ) dµ(σ) = 1, (5)

W (x, σ) =W
(
x, φ(σ)

)
∀φ ∈ Diff(S), (6)

suppW (x, ·) ⊂ Ux ⊂ S (locality), (7)
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characteristics(W ) ⊂ luminal cone defined by c (GA0),
(8)

and such that the flux–content balance (GA2) holds when
observables are formed by

O(x) =
∫
S
W (x, σ)Omicro(σ) dµ(σ). (9)

Interpretation (solo → open phase → resolution).
The kernel may be interpreted not merely as a
weighting function but as the quantitative manifestation
of the substrate’s phase structure. In this view, the
fundamental quantum sphere exists in a solo state,
undivided and boundaryless. From this solo state arises
an open phase state, carrying latent phase information
without yet specifying outcomes. An observation
then corresponds to a particular resolution state of
this open phase, expressed mathematically through the
kernel W (x, σ) that projects substrate amplitudes into
spacetime events. Thus, the kernel formalism provides
the bridge between the ontological substrate (quantum
sphere) and the empirical phenomenology (observed
fields and interactions).

B. Interactions as resolution events (observation ≡
interaction)

Definition 2 (Resolution–interaction equivalence)
Within SSC, an interaction between phase states is a
resolution event generated by the kernel W (x, σ).
Consequently, observation is not a distinct physical
category: observation is interaction, i.e. a particular
resolution event in which one subsystem functions as a
macroscopic recorder. Formally,

interaction ≡ resolution ≡ observation.

Operational statement. Let O1, . . . ,On be local oper-
ators associated to subsystems with micro-descriptors
Ok,micro(σk). Their resolved n-point correlator is

〈
O1(x1) · · · On(xn)

〉
=

∫ [ n∏
k=1

dµ(σk)W (xk, σk)

]

×
〈 n∏
k=1

Ok,micro(σk)
〉
S
,

(10)

where ⟨· · · ⟩S is the substrate correlation functional
on the fiber. Any coupling among subsystems
(“interaction”) modifies the joint micro-correlator and
thereby the resolved correlator; a measurement is the
special case in which one subsystem is engineered to leave
a robust macroscopic record.

Proposition 1 (No separate collapse postulate)
Given the kernel formalism and Eq. (10), no additional
“collapse” dynamics is required. What is colloquially

termed “wavefunction collapse” is the update of the
resolved state induced by: (i) the interaction-driven
change of the micro-correlator on S, and (ii) the
conditioning associated with macroscopic record degrees
of freedom. Thus, observation introduces no extra
propagating field and remains consistent with UNI-MET
and GA0.

Remarks. (i) The identification observation ≡ in-
teraction ensures that all empirical events are treated
within the same resolution calculus; there is no dual
ontology. (ii) Conservation laws and Ward identities
apply uniformly: BRST/diffeomorphism constraints
act on the correlators that feed Eq. (10), so gauge
consistency is preserved under resolution. (iii) In
practice, coarse-graining the recorder subsystem defines
conditional correlators (pointer sectors); Eq. (10) then
yields Born-rule weights as relative resolutions encoded
by W .

C. Variational derivation of the kernel

To upgrade beyond toy choices, we derive admissible
kernels as extrema of a local functional consistent with
UNI-MET, GA0, GA2 and CB∞. Consider

S[W,λ] =

∫
M

√
−g d4x

[∫
S
dµ(σ)L

(
W,∇xW,∇σW

)
+ λ(x)

(∫
S
W dµ− 1

)]
,

(11)

with a local, positive, causal density L. A minimal,
symmetry-respecting choice is

L =
α

2
gµν ∂µW ∂νW +

β

2
γAB ∇AW ∇BW + ξ W lnW,

(12)
where γAB is a reference Riemannian metric on S
(induced from Sbase), α, β > 0 set spacetime/fiber
resolution penalties, and the entropic term W lnW
enforces positivity and selects a unique normalized
representative.
Varying W with fixed gµν and γAB yields the Euler–

Lagrange equation

−α□W − β∆σW + ξ (1 + lnW ) = λ(x), (13)

Reflective events: input → projection → output.
At each spacetime point x we treat physics as a local
reflective event :

• Input (GR & substrate). Local GR state
(metric, matter sources) + local substrate state
W (x, ·).

• Projection (causal, local). A projector at x
combines these inputs and produces observable
content.
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• Output (to next step). Updated observables at
x and an updatedW (x, ·); these flow forward along
light cones and become inputs at nearby points.

In shorthand:

(GR at x, Wx)
project−−−−−→ (Ox, W new

x ),

with the update constrained by causality (no su-
perluminal signalling). Where fields are strong,
the local resolution length ℓres(x) shrinks and the
substrate behaves like a mirror : short–distance structure
is filtered, while macroscopic GR evolution remains
deterministic. Whether one pictures an “inside-sphere”
or “external” projection is immaterial—the same Wx

gives the same outputs at x.
Numerical method at a glance. For stationary runs on

S3 we discretize the zonal coordinate with the exact S3

measure and use a divergence–form Laplacian. We solve
Eq. (13) with a projected–Newton step inW (augmented
constraint row, line search to enforce W > 0),
reporting weighted residuals and information–theoretic
deviations from W0 = 1/(2π2). This validates
the existence/uniqueness results and provides explicit,
non–toy structured kernels used in the Yukawa section.

Numerical status (stationary S3). We implemented a
projected-Newton solver with positivity, normalization,
and backtracking line search (App. A). Converged
runs produce positive, normalized W (χ) profiles for
zonal biases and agree under grid/tolerance changes.
Representative diagnostics and profiles are provided in
App. A; full physical W (x, σ) solutions will be presented
separately.

Well-posedness: hyperbolicity, existence, regularity

Assumptions (A1–A4). (A1) (M, gµν) is globally
hyperbolic with smooth Cauchy slices; (A2) the fiber
(S, γAB) is compact, smooth, and without boundary
(or with admissible Neumann/even Klein data); (A3)
α, β, ξ > 0 are fixed constants in Eq. (13); (A4)
admissible initial data {W |Σ0

, ∂tW |Σ0
} ∈ H1

xH
1
σ ×L2

xH
1
σ

obey normalization
∫
S
W dµ = 1 and W ≥ 0 a.e.

Theorem 2 (Luminal characteristics) For fixed σ ∈
S, the x-kinetic part of Eq. (13) is a linear wave operator
with principal symbol α gµνξµξν . Hence characteristics
coincide with the null cone of gµν ; no superluminal
propagation arises (GA0).

[Sketch] Principal symbol analysis: the highest-
derivative x-terms furnish α gµν∂µ∂ν , whose characteris-
tic set is gµνξµξν = 0. Lower-order terms and the elliptic
σ-part do not affect the cone.

Theorem 3 (Global existence and uniqueness)
Under (A1–A4), the mixed hyperbolic–elliptic IBVP for
Eq. (13) with the normalization constraint admits a
unique solution W ∈ C0

(
R;H1

xH
1
σ

)
∩ C1

(
R;L2

xH
1
σ

)
.

[Sketch] Energy estimates on globally hyperbolic M
control the hyperbolic x-part; coercivity of the elliptic
∆σ plus compactness of S and the entropic convexity
term ξ W lnW yield strict convexity on each slice.
The normalization constraint is enforced by a slice-wise
Lagrange multiplier λ(x); uniqueness follows from strict
convexity.

Lemma 1 (Positivity and maximum principle)
With ξ > 0 and admissible boundary data
(Neumann/even Klein), solutions satisfy W ≥ 0
and

∫
S
W dµ = 1 for all times; no negative excursions

or blow-up occur.

[Sketch] The entropy barrier renders the functional
strictly convex and penalizes W → 0+. For the
σ-elliptic part, apply the maximum principle on compact
S; normalization is preserved by construction via λ(x).
Well-posedness, existence, and uniqueness. We now

make the variational problem rigorous.

Theorem 4 (Kernel theorem) Fix α, β, ξ > 0, and
let S be a compact fiber with smooth Riemannian metric
γAB. For each x ∈M, the minimization

min
W∈Ax

∫
S

(
α
2
gµν∂µW ∂νW+β

2
γAB∇AW ∇BW+ξ W lnW

)
dµ(σ)

(14)

subject to
∫
S W dµ = 1 and W ≥ 0 admits a unique

solution . . .

[Proof sketch] (Direct method of the calculus of
variations.) Coercivity and strict convexity follow
from α, β > 0 (Dirichlet terms) and the strictly
convex entropic term W lnW for W ≥ 0. Lower
semicontinuity holds on H1(S); the affine constraint
defines a weakly closed subset. Existence follows by
compactness; strict convexity yields uniqueness. The
Euler–Lagrange equation is (13); positivity follows from
the entropy barrier (and maximum principle for the
elliptic part in σ).
Boundary data and characteristics. On a foliation

with non-null boundary ∂Ux ⊂ S (or on a Klein-identified
S), admissible W obey either Neumann data ∇nW = 0
or evenness under the antipodal map; both preserve
normalization and ensure well-posedness of (13). By
GA0, the characteristic cone of the x-kinetic part is
luminal, so W propagates at c in spacetime and diffuses
on S.
Numerical check (linearized, α > 0). Linearizing

Eq. (13) about the uniform solution on S3 and projecting
on a single zonal harmonic Zℓ(χ) yields α(∂tt − ∂xx)a+
(ξ + βλℓ)a = 0 with λℓ = ℓ(ℓ + 2), so the characteristic
speed in x is strictly luminal (c = 1). A finite–difference
evolution of a localized bump confirms a peak–trajectory
slope cfit ≈ 1, consistent with GA0, while the (ξ + βλℓ)
term only contributes a masslike oscillation factor.

Corollary 1 (Born weights as relative resolutions)
Let {Ai} be a measurable partition of S. Define
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pi(x) :=
∫
Ai
W (x, σ) dµ(σ). Then pi ≥ 0 and

∑
i pi = 1

by (5). If the micro-correlator factorizes across {Ai},
the resolved n-point function (10) reduces to a convex
combination with weights {pi}; these are the Born-rule
probabilities for outcomes labeled by the partition.

with spacetime d’Alembertian □ and fiber Laplacian
∆σ. Varying λ enforces the normalization constraint
(5). Equation (13) is elliptic in σ and hyperbolic in
x; admissible solutions satisfy luminal characteristics
(GA0), locality (7) and reparametrization invariance (6).

D. Zeta-aligned substrate hypothesis

We posit that the substrate admits an analytic
organization analogous to the Riemann zeta function: a
critical line acting as a global orientation and a symmetry
across that line pairing substrate modes. The observable
world is a projection of this structure: states on the line
are preserved (fixed orientation), while states off the line
project as ratios and asymmetries (small–large hierarchy,
particle/antiparticle). See Axiom 25 for the analytic
origin (critical-line inheritance).

Global vs. local alignment: critical line, θ, and Φ.
There are two equivalent realizations of ZETA–POS in
SSC:

• Option A (global): The critical line maps to
θ = 0 (global vacuum alignment). Symmetry across
the line encodes particle/antiparticle pairing; the
Φ-neutrality sum rule dynamically re-enforces
alignment in projection.

• Option B (local): The critical line maps to
the elliptic Φ-constraint (slice-wise neutrality).
Locking the line locally implements the same global
alignment; the nonlocal screening term arises as the
projection geometry of that line.

In SSC these are compatible: the critical line provides
the deeper structure; θ is its global orientation; Φ is its
local enforcement.

Antiparticles and annihilation as projection re-
dundancy. Substrate pairing implies particle and
antiparticle are twin modes pre-projection. Annihilation
corresponds to converging projections; once coincident,
one projection is redundant and the pair reverts to the
unprojected, symmetric substrate state.

Higgs angularity and the electroweak hierarchy.
Assigning the preserved global angular mode to the
Higgs (Axiom 24) becomes a corollary of ZETA–POS:
the critical-line orientation is the origin of kernel locking.
Fluctuations that would rotate this preserved angle are
projected out at leading order; the remaining electroweak
and Yukawa effects set a light, stable Higgs mass without
partner fields.

Kernel locking of the preserved mode. By Axiom 24,
among the angular modes on the substrate fiber we
single out one preserved mode. The kernel weights
are chosen so that, under coarse-graining on each slice,
long-wavelength gradients of this preserved mode average
to zero. Operationally, W acts as an orthogonality filter:
fluctuations that would rotate the preserved angle are
suppressed at leading order in the projected sector, while
orthogonal fluctuations are unaffected. This locking
condition is global (projection-level) and does not modify
the local gauge or BRST structure of the low-energy
theory. See Axiom 25 for the analytic origin (critical-line
inheritance).

E. Symmetry-reduced solutions and illustrative
forms

For a fiber with S2 × S1 symmetry or a Klein self-
identification of S3, expand

W (x, σ) =
∑
ℓmn

cℓmn(x)Yℓm(Ω) einθ, (15)

where (Ω, θ) are angles on S. In stationary patches
(∂tcℓmn=0), (13) reduces to[
β(ℓ(ℓ+1) + n2) + ξ

]
cℓmn + ξ cℓmn ln W̄ = λ cℓmn, (16)

with W̄ a local average fixing the normalization.
Truncation to lowest harmonics and small-gradient
limits yield narrow, approximately Gaussian lobes on
S, thereby recovering the practical overlap textures
previously used for Yukawas as illustrative toy kernels.

F. Consequences for observables

The resolution formalism makes no categorical
distinction between “physical interactions” and “mea-
surements”: both are instances of Eq. (10). Scattering
amplitudes and Born probabilities thus emerge as special
cases of the same kernel calculus.
Gauge strengths. With GC–SSC, coarse-grained

projectors Pi(σ) define

1

g2i (µ)
= κ

∫
S
dµ(σ)Pi(σ)

[
ρres(x, σ)+β

′K(x, σ)
]
µ
W (x, σ),

(17)
where [·]µ denotes coarse-graining to scale µ. The ratios
and their running become functionals of the derived W
rather than assumptions.
Scattering amplitudes. For n incoming and m

outgoing asymptotic states represented by substrate
profiles Ψin/out(σ), the SSC scattering functional is

An→m =

∫ [ n+m∏
α=1

dµ(σα)W (xα, σα)

]
×
〈
Ψout(σn+1, . . . , σn+m)Ψin(σ1, . . . , σn)

〉
S
.

(18)
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This is precisely the resolution of the substrate
S–matrix element. The kernel supplies the physical
weighting; unitarity and Ward identities are inherited
from the substrate correlator.

Measurement probabilities. A measurement is the
special case in which one subsystem is engineered as
a recorder with distinct pointer states {Rj}, each
corresponding to disjoint sectors of the fiber S. The
probability of outcome j is

pj =

∫
Sj

dµ(σ)W (x, σ) ρeff(σ), (19)

with ρeff(σ) the effective density from entangled micro-
correlators. This reproduces the Born rule as relative
resolution weights of disjoint sectors.

Cosmological residual (tracking vs. freeze). On the
expanding foliation (CB∞), the homogeneous compo-
nent of W sources a residual

Λ ∼ 8πG

c2

〈
ρres

〉
hom

, (20)

with tracking Λ ∝ H2 when W adiabatically follows
H, and freeze-out to an effective constant when ∂tW
decouples at late times. The pair (α, z∗) characterizing
the tracking fraction and freeze redshift is thus
computable from kernel dynamics.

Flavor hierarchies. Family wavelets ΨLi (σ),Ψ
R
j (σ)

supported by the low-ℓ, n modes yield Yukawas

(Yf )ij ∝
∫
S
dµ(σ)W PH(σ)ΨLi (σ)Ψ

R
j (σ), (21)

replacing heuristic Gaussian overlaps by integrals with
W obtained from (13). Hierarchies and mixings follow
from relative lobe geometry.

Unification of cases. Both scattering amplitudes and
measurement probabilities are integrals of substrate
correlators weighted by the kernel W . The former
involve dynamical evolution between asymptotic states,
while the latter involve conditioning on recorder sectors.
In SSC they are not separate postulates but unified
manifestations of resolution events.

G. Klein hypersphere and boundary conditions

If S is a Klein-self-identified hypersphere (antipodal
identification σ ∼ A(σ)), admissible kernels obey

W (x, σ) =W
(
x,A(σ)

)
,

∫
S
W dµ = 1, (22)

selecting even harmonics under the identification. This
topological constraint fixes zero-modes uniquely (up to
reparametrization) and regularizes large-scale drifts of
W . Remark. Evenness under the antipodal map
is equivalent to imposing Neumann data on the RPn
quotient; this removes zero-mode drifts while preserving
the normalization constraint.

H. Numerical note (for reproducibility)

For practical fits one may solve (13) by projected
gradient flow with entropy projection enforcing W ≥ 0
and (5):

∂τW = α□W + β∆σW − ξ (1 + lnW ) + λ(x), (23)

with λ(x) updated each step to maintain normalization.
Convergence in τ yields the stationaryW used for predic-
tions. Convergence. Because the functional in Thm. 3 is
strictly convex in W under the positivity/normalization
constraint, the projected gradient flow converges to the
unique stationary solution for each x.
Summary. This section promotes the kernel from

a didactic approximation to a derived object fixed
by axioms and a minimal variational principle. Toy
kernels are recovered as symmetry/zero-gradient limits.
The interpretation paragraphs connect the solo state
of the quantum sphere to open phase and resolution
states, and establish that interaction, resolution,
and observation are equivalent events, giving the
empirical meaning of W (x, σ). Scattering amplitudes,
measurement probabilities, cosmological residuals, and
flavor hierarchies all emerge as unified consequences of
this single resolution calculus.

IV. EMERGENCE OF GENERAL RELATIVITY

Having established the SSC axioms and projection
kernel (Sec. III), we now show how classical General
Relativity emerges from the core resolution state as
the unique low-energy effective description of the
metric sector. The kernel’s resolution calculus enforces
diffeomorphism invariance, a single luminal cone (GA0),
and universal metric coupling (UNI-MET). Locality and
second-order equations of motion then single out the
Einstein–Hilbert action with its boundary completion;
the gravitational constant G is fixed internally by the
SSC flux–content relation (GA2). The constraint field Φ
eliminates unwanted scalar degrees of freedom.

A. Action, boundary, and uniqueness

Theorem 5 (EH+GHY) (Uniqueness of the 4D met-
ric action from SSC.) Assume GR-Ω, UNI-MET,
diffeomorphism invariance, locality, and that the metric
Euler–Lagrange equations are at most second order.
Then in four dimensions the unique local bulk action (up
to a cosmological constant) is

Sbulk =
1

16πG

∫ √
−g R d4x,

and a well-posed Dirichlet variational problem requires
the Gibbons–Hawking–York boundary term

Sbdy =
1

8πG

∫
∂M

√
|h|K d3y.



10

(i) Admissible scalars. Locality and diffeomorphism
invariance restrict the bulk Lagrangian to scalar densities
built from gµν and Rµνρσ, i.e.

√
−g f(Rµνρσ, g).

(ii) Second-order field equations. In D = 4, demanding
at-most second-order metric Euler–Lagrange equations
selects the Lovelock densities; the only possibilities are a
constant and R. Hence the bulk density is

√
−g(Λ + R)

up to normalization.
(iii) Boundary variation. Varying the Einstein–Hilbert

term yields a bulk piece proportional to Gµνδg
µν and a

total divergence∇µV µ (see Eq. (24) below for the explicit
V µ). On a non-null boundary with unit normal nµ, the

surface term is
∫
∂M

√
|h|nµV µ.

(iv) GHY completion and Dirichlet data. The
Gibbons–Hawking–York term varies as δSbdy ∝ (Kab −
Khab)δh

ab−nµV µ. For Dirichlet boundary data (δhab =
0) the first term vanishes and the −nµV µ cancels the
boundary contribution from the bulk variation, leaving
a well-posed variational principle with bulk equations
Gµν = 8πGTµν .

(v) Normalization via GA2. The overall coefficient
1/(16πG) is fixed internally by GA2 (flux = content) in
the weak-field limit (Sec. IV.B), matching the Newtonian
Gauss law.

Explicit variation and boundary cancellation. For the
bulk term:

δ
(√
−g R

)
=
√
−g Gµν δgµν +

√
−g∇µV µ, (24)

V µ := gαβ∇µδgαβ −∇βδgµβ .

Thus

δSEH =
1

16πG

∫
M

√
−g Gµν δgµν+

1

16πG

∫
∂M

√
|h|nµV µ.

(25)
The Gibbons–Hawking–York term SGHY =
1

8πG

∫
∂M

√
|h|K varies as

δSGHY =
1

8πG

∫
∂M

√
|h|
[
(Kab −Khab) δhab − nµV µ

]
.

(26)
For Dirichlet data (δhab = 0) the (Kab−Khab) δhab term
vanishes and the −nµV µ cancels the boundary piece from
δSEH, leaving a well-posed bulk variation with equations
Gµν = 8πGTµν .

Theorem 6 (Internal normalization of G via GA2)
On a large enclosing 2-sphere SR in a near-flat patch,
GA2 equates the resolution flux through SR to the
content enclosed, fixing the bulk action coefficient to
1/(16πG) without Newtonian matching.

[Uniform sphere example] Consider a static, uniform-
density ball of mass M and radius R⋆ ≪ R. Let
Φres denote the flux functional implied by GA2 from
the kernel calculus; in the weak-field limit it reduces
to
∮
SR
∇iU dSi with U the Newtonian potential. By

GA2, Φres(SR) = 4πGM equals the integrated content

∫
(ρ−ε) d3x. Matching the linearized field equation from

Sgrav to ∇2U = 4πGρ fixes the overall coefficient to
1/(16πG).
Fixing the 1/16πG coefficient (GA2). In the weak,

static limit, write g00 = −1 + 2ΦN/c
2 and gij =

(1 + 2ΦN/c
2)δij . The linearized Einstein equations give

∇2ΦN = 4πGρ. Integrating over a ball BR enclosing
total mass M =

∫
BR

ρ d3x and using Gauss’ law:∮
SR

∇ΦN · dS = 4πGM. (27)

For a point mass, ΦN = −GM/r gives the same
surface flux. This is precisely the GA2 “flux = content”
statement, and fixes the coupling in the bulk action to
be 1/16πG so that the Newtonian limit reproduces the
observed G.

Explicit G normalization example (uniform sphere)

Let ρ = ρ0 Θ(R− r) (static). Solve ∇2ΦN = 4πGρ:

ΦN (r) =

−2πGρ0
(
R2 − r2

3

)
, r ≤ R,

−GM
r
, M =

4π

3
ρ0R

3, r ≥ R.
(28)

Compute the surface flux at any r ≥ R:
∮
Sr

∇ΦN · dS =

4πGM . Thus GA2 (flux = content) reproduces the same
G as the metric sector with the 1/16πG normalization.

B. Sorting sector and field equations

Sorting sector. Φ is a Lagrange multiplier (Φ-
CONST):

Ssort =

∫ √
−g [−Φ(ρ− ε)] d4x. (29)

Field equations:

Rµν − 1
2Rgµν = 8πGTµν , ∇2Φ = 4πG(ρ− ε). (30)

Theorem 7 (Int normalization of G (Gauss law))
On a large enclosing SR in a near-flat patch, GA2 equates
resolution flux to content, fixing the action coefficient
to 1/16πG internally (no Newtonian matching).
Descriptor: the same G appears in both Einstein and
Poisson sectors.

Theorem 8 (Ext neutrality of Φ (no scalar hair))
For Φ|S = 0 on a smooth 2-surface S enclosing
supp(ρ − ε) and Φ → 0 at infinity, the unique exterior
solution is Φ ≡ 0. Descriptor: outside sources, SSC
reduces to vacuum (or standard matter) GR.

Proof (maximum principle & Hopf lemma): Harmonic Φ
on Ωext attains extrema on S ∪{∞} and both values are
zero ⇒ Φ ≡ 0. Neumann/Robin variants use outward
normal inequalities to force the trivial solution. □
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Bianchi & conservation (completeness check). Vary-
ing Sgrav gives ∇µGµν = 0 (Bianchi); hence ∇µTµν = 0
on-shell. The Φ-equation is elliptic and does not alter
the local conservation law.

C. Hamiltonian analysis and degrees of freedom

ADM split: (hij , π
ij) with lapse N and shift N i as

Lagrange multipliers. The primary constraints are πN ≈
0, πi ≈ 0; varying N,N i yields the Hamiltonian and
momentum constraints,

H =
1√
h

(
πijπ

ij − 1
2π

2
)
−
√
hR(3) ≈ 0, (31a)

Hi = −2∇jπji ≈ 0. (31b)

For the non-propagating constraint field Φ we have
a second-class pair (πΦ, CΦ) eliminated by the Dirac
bracket; no Φ-mode propagates. The remaining
constraints close under the Dirac (Poisson) bracket as
in GR,

{H[α],H[β]} = Hi
[
hij(α∂jβ − β∂jα)

]
,

{Hi[ξi],H[α]} = H[Lξα],

{Hi[ξi],Hj [ηj ]} = Hi[(Lξη)i]. (32)

so the theory has exactly two propagating tensor
polarizations.

Result. SSC gravity ⇒ 2 propagating DOF, no extra
scalar or vector modes.

D. Linear waves (bridge to full treatment)

Linearizing the metric about Minkowski, gµν = ηµν +
hµν , and imposing harmonic gauge ∂µh̄µν = 0 with
h̄µν := hµν − 1

2ηµνh, the field equations reduce to the
standard sourced wave equation

□h̄µν = −16πG

c4
Tµν . (33)

By GA0 (single luminal cone) and Φ-CONST (non-
propagating constraint), disturbances propagate at c
with exactly two tensor polarizations and no scalar
radiation channel. We defer the full mode decomposition,
energy flux, and observational phenomenology to Sec. VI.

Ghosts and causality. The metric field equations are
second order and single-metric; no higher-derivative
curvature densities are introduced in the low-energy
sector, so there is no Ostrogradsky instability. Linearized
constraints eliminate non-tensor modes (Sec. V), and the
characteristic cone coincides with c (Thm. 2), precluding
superluminal or acausal propagators.

E. Post-Newtonian expansion (bridge to full
treatment)

Beyond the Newtonian limit, the SSC framework
admits a systematic post-Newtonian (PN) expansion in
powers of v/c or GM/(rc2). The structure is identical
to that of GR, producing corrections at 1PN order
consistent with the Einstein–Infeld–Hoffmann (EIH)
equations. We defer the full derivation, including explicit
1PN dynamics and observable consequences (perihelion
shift, Shapiro delay), to Sec. IVE.

F. N-body dynamics and periastron

From the 1PN metric one recovers the standard
Einstein–Infeld–Hoffmann N-body Lagrangian, including
the triple-mass terms mapping back to nonlinearities in
g00. For binaries this yields the canonical periastron
advance:

∆ω =
6πGM

a(1− e2)c2
, (34)

matching GR.
Summary. Starting from the SSC axioms and

projection kernel, the emergent metric sector reproduces
General Relativity in full detail: EH+GHY action,
correctly normalized G, two tensor DOF, luminal
propagation, 1PN expansion, and N-body dynamics.

V. FULL ADM/DIRAC ANALYSIS

ADM decomposition ds2 = −N2dt2 + hij(dx
i +

N idt)(dxj +N jdt). Momenta πij =
√
h

16πG (K
ij −Khij).

Primary constraints: πN ≈ 0, πi ≈ 0, πΦ ≈ 0.
Hamiltonian (up to boundary):

H =

∫
d3x (NH+N iHi + λΦπΦ), (35)

H =
16πG√

h
(πijπ

ij − 1
2π

2)−
√
h

16πG
(3)R

+
√
hΦ(ρ− ε) +Hmatter, (36)

Hi = −2∇jπji +Hmatter
i . (37)

Secondary: H ≈ 0, Hi ≈ 0, CΦ :=
√
h(ρ − ε) −√

h∇2Φ/(4πG) ≈ 0.
Algebra and DOF. {H,H}, {Hi,H}, {Hi,Hj} close

as in GR (first class). {πΦ(x), CΦ(y)} =
√
h

4πG∇
2
xδ

(3)(x−y)
is invertible⇒ second-class pair. Dirac-bracket eliminate
(πΦ, CΦ). Remaining: 2 configuration DOF (tensor
polarizations). No scalar propagator.
Dirac bracket for the (πΦ, CΦ) pair. Primary con-

straint πΦ ≈ 0 and secondary CΦ := ∇2Φ−4πG(ρ−ε) ≈ 0
form a second-class pair with

{πΦ(x), CΦ(y)} = ∇2δ(3)(x− y).
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Let G(x,y) be the Green operator satisfying
∇2G(x,y) = δ(3)(x − y) with the same boundary
data as Φ. The Dirac bracket for any functionals F,G is

{F,G}D = {F,G}

−
∫

d3u d3v {F, πΦ(u)}G(u,v) {CΦ(v), G}

+ (πΦ ↔ CΦ). (38)

Since hij , π
ij have vanishing Poisson brackets with πΦ

and CΦ, their Dirac brackets equal their Poisson brackets.
Thus eliminating (Φ, πΦ) leaves the standard GR phase
space and symplectic structure.

Constraint algebra and DOF count

With smearing functions,

H[N ] =

∫
d3xN H, H[N⃗ ] =

∫
d3xN iHi,

the (Dirac) algebra closes as in GR:

{H[N⃗ ], H[M⃗ ]} = H[LN⃗M⃗ ], (39)

{H[N⃗ ], H[M ]} = H[LN⃗M ], (40)

{H[N ], H[M ]} = Hi

[
hij(N∂jM −M∂jN)

]
. (41)

The Φ-pair is second-class and removed as in the
previous subsection; it does not alter the first-class
subalgebra above.

Degrees of freedom. Canonical variables per point:
(hij , π

ij) (12), (N, πN ) (2), (N i, πi) (6), (Φ, πΦ) (2)
⇒ 22. Constraints: 8 first-class (πN , πi,H,Hi) and 2
second-class (πΦ, CΦ). Thus

#DOF = 1
2 [22− 2× 8− 2] = 2,

the two tensor polarizations of GR.

VI. LINEAR WAVES

Linearize gµν = ηµν + hµν , harmonic gauge ∂µh̄µν = 0
with h̄µν = hµν − 1

2ηµνh:

□h̄µν = −16πG

c4
Tµν .

By GA0, waves are luminal; (Φ-CONST) forbids scalar
radiation.

VII. POST-NEWTONIAN EXPANSION TO 1PN
(FULL BOOKKEEPING)

We solve Einstein’s equations iteratively in powers of
ϵ ∼ v/c ∼

√
U/c.

A. Matter model and PN scalings

For a perfect fluid with rest density ρ, internal energy
per mass Π, pressure p:

T 00 = ρc2
(
1 + Π +

v2

c2
+O(ϵ4)

)
, (42)

T 0i = ρc vi
(
1 + Π +

v2

c2
+

p

ρc2

)
+O(ϵ5), (43)

T ij = ρvivj + δijp+O(ϵ4). (44)

Define the standard PN potentials (integrals over
instantaneous matter distribution):

U(x) = G

∫
ρ(x′)

|x− x′|
d3x′, (45)

Vi(x) = G

∫
ρ(x′) vi(x

′)

|x− x′|
d3x′, (46)

Φ1(x) = G

∫
ρ(x′) v′2

|x− x′|
d3x′, (47)

Φ2(x) = G

∫
ρ(x′)U(x′)

|x− x′|
d3x′, (48)

Φ3(x) = G

∫
ρ(x′)Π(x′)

|x− x′|
d3x′, (49)

Φ4(x) = G

∫
p(x′)

|x− x′|
d3x′. (50)

From wave equation to 1PN metric

In harmonic gauge, ∂µh̄
µν = 0 with h̄µν := hµν −

1
2ηµνh,

□h̄µν = −16πG

c4
τµν ,

h̄µν(t,x) =
4G

c4

∫
τµν(t− |x− x′|/c,x′)

|x− x′|
d3x′.

(51)

At 1PN accuracy (slow motion, weak field), the needed
potentials are

U(x) = G

∫
ρ(x′)

|x− x′|
d3x′,

V i(x) = G

∫
ρ(x′) vi(x′)

|x− x′|
d3x′.

(52)

Iterating once gives

g00 = −1 + 2U

c2
− 2U2

c4
+O(c−6),

g0i = −
4Vi
c3

+O(c−5),

gij =

(
1 +

2U

c2

)
δij +O(c−4).

(53)

which yields γ = β = 1 by direct read-off.
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B. Harmonic-gauge field equations at 1PN

Write gµν = ηµν + hµν and solve □h̄µν = − 16πG
c4 τµν

with τµν = Tµν + O(hT ). Iterating with the flat-space
Green’s function and enforcing ∂µh̄

µν = 0, we obtain the
1PN metric (GR values):

g00 = −1 + 2U

c2
− 2U2

c4
+

4Φ1 + 4Φ2 + 2Φ3 + 6Φ4

c4
+O(ϵ6),

(54)

g0i = −
4Vi
c3

+O(ϵ5), (55)

gij =

(
1 +

2U

c2

)
δij +O(ϵ4). (56)

These expressions follow by iterating □ h̄µν =
−16πGc−4τµν with the flat Green’s function under
∂µh̄

µν = 0 and matching to the standard PN potentials
(U,Φa, Vi) with SSC matter scalings.

C. PPN parameters and checks

Comparing (56) to the standard PPN form gij =
(1 + 2γU/c2)δij gives γ = 1. Comparing (54) to g00 =
−1 + 2U/c2 − 2βU2/c4 + . . . yields β = 1. Absence
of a long-range scalar (Φ non-propagating) ⇒ no −1PN
dipole term in radiation.

PPN parameters beyond γ, β

Because the theory is single-metric, diffeomorphism
invariant, and conserves Tµν , the preferred-frame and
nonconservative parameters vanish:

α1 = α2 = α3 = ξ = ζ1 = ζ2 = ζ3 = ζ4 = 0.

Thus the full PPN set matches GR in screened regimes.
No −1PN dipole radiation. With a single metric and

conserved Tµν , the monopole is constant and the mass
dipole’s second derivative equals the total force (zero in
the center-of-mass frame). No extra long-range scalar
exists to source a −1PN channel, so the leading radiation
is quadrupolar,

ĖGW = − G

5c5

〈 ...
Q ij

...
Q
ij
〉
.

D. Energy flux (quadrupole) and two-body
dynamics

At leading PN order the luminosity is

ĖGW = − G

5c5
〈 ...
Q ij

...
Q ij

〉
,

with Qij the trace-free mass quadrupole of the source.
For a compact binary with separation r = x1 − x2,

reduced mass µ, total mass M , the leading phasing
matches GR (no dipole).

E. Periastron advance (1PN)

From the 1PN geodesic/eff. two-body Hamiltonian, the
secular periastron advance per orbit is

∆ω =
6πGM

a(1− e2)c2
,

for semi-major axis a and eccentricity e (test limit; for
comparable masses M is replaced by appropriate total
mass entering the 1PN equations of motion). This
matches the canonical GR value, confirming SSC ⇒ GR
at 1PN.

VIII. STANDARD MODEL: GROUP AND
CHARGES (WITH EXPLICIT RREF)

Square system (linear + cubic) and RREF. Un-
knowns Y ⊤ = (YqL , YuR

, YdR , YℓL , YeR). From Q =
T3 + Y we have YqL = 1

6 . Linear anomalies:

[SU(2)]2U(1) : 3YqL + YℓL = 0, (57)

[SU(3)]2U(1) : 2YqL − YuR
− YdR = 0, (58)

grav–U(1) : 6YqL − 3YuR
− 3YdR + 2YℓL − YeR = 0.

(59)

Insert YqL = 1
6 :

YℓL = − 1
2 , YeR = −1, YuR

+ YdR = 1
3 .

Cubic anomaly:

6Y 3
qL−3Y

3
uR
−3Y 3

dR +2Y 3
ℓL−Y

3
eR = 0 ⇒ Y 3

uR
+Y 3

dR = 7
27 .

(60)
Let s = YuR

+YdR = 1
3 and p = YuR

YdR . Then s
3−3ps =

7
27 ⇒ p = − 2

9 . Solve t
2−st+p = 0 to obtain t ∈ { 23 ,−

1
3}.

Thus

YuR
= 2

3 , YdR = − 1
3 , YℓL = − 1

2 , YeR = −1.

Uniqueness: the RREF of the linear system (57)–(59)
with YqL = 1

6 leaves a one-parameter family; the cubic
fixes it uniquely to the above solution.

IX. EMERGENCE OF THE STANDARD
MODEL: GROUP, CHARGES, AND MASSES

With the SSC projection kernel W (x, σ) established
(Sec. III), the low-energy gauge structure is constrained
by three ingredients: (i) universal metric coupling
and a single luminal cone (UNI-MET, GA0), (ii)
admissible, anomaly-free, renormalizable matter
sets (CONS1) consistent with a single visible abelian
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factor (AM1) and compact nonabelian factors (NA-low),
and (iii) resolution weights on the fiber supplied
by W , which determine coarse-grained gauge strengths
via GC–SSC and encode flavor data through overlap
integrals.

Points (i)–(ii) restrict the gauge group and quantum
numbers. Point (iii) determines how strongly each
channel couples and how fermion masses/mixings
arise, once the minimal Higgs projection channel
(HIGGS-PROJ) is specified. In this section we first
derive the unique low-energy group and one-generation
hypercharges, and then show how Yukawa textures follow
from the derived kernelW (with the previous toy overlaps
appearing as symmetry limits).

Theorem 9 (Low-energy group and hypercharges)
Under AM1, NA-low, CONS1, and CHARGE1, the
low-energy gauge group is GSM = SU(3)c × SU(2)L ×
U(1)Y , and the unique one-generation hypercharges are

YqL = 1
6 , YuR

= 2
3 , YdR = − 1

3 , YℓL = − 1
2 , YeR = −1.

Descriptor: necessity of an abelian factor and cu-
bic/linear anomaly cancellation fix the pattern.

Square system (linear + cubic) and RREF. Un-
knowns Y ⊤ = (YqL , YuR

, YdR , YℓL , YeR). From Q =
T3 + Y : YqL = 1

6 . Linear anomalies:

[SU(2)]2U(1) : 3YqL + YℓL = 0, (61)

[SU(3)]2U(1) : 2YqL − YuR
− YdR = 0, (62)

grav–U(1) : 6YqL − 3YuR
− 3YdR + 2YℓL − YeR = 0.

(63)

Insert YqL = 1/6⇒ YℓL = −1/2⇒ YeR = −1. Equation
(62) gives YuR

+ YdR = 1/3. The cubic anomaly

6Y 3
qL − 3Y 3

uR
− 3Y 3

dR + 2Y 3
ℓL − Y

3
eR = 0

becomes Y 3
uR

+ Y 3
dR

= 7
27 . With s = YuR

+ YdR = 1/3

and p = YuR
YdR : s

3 − 3ps = 7/27 ⇒ p = −2/9. Solve
t2 − st+ p = 0⇒ t = {2/3,−1/3}. Unique real solution.

Necessity of U(1). If Q ∝ T3 only, Q(uL) = −Q(dL)
contradicts (+2/3,−1/3). Hence the abelian factor is
required (CHARGE1).

X. STANDARD MODEL LAGRANGIAN FROM
SSC AXIOMS (DERIVED AND UNIQUE)

Setup from axioms. From AM1, NA-low, CONS1,
and CHARGE1 (Secs. II, VII), the low-energy gauge
group and one-generation hypercharges are fixed: GSM =
SU(3)c × SU(2)L × U(1)Y and YqL = 1

6 , YuR
= 2

3 , YdR =

− 1
3 , YℓL = − 1

2 , YeR = −1. Fermion content per
generation: qL ∼ (3, 2)1/6, uR ∼ (3, 1)2/3, dR ∼
(3, 1)−1/3, ℓL ∼ (1, 2)−1/2, eR ∼ (1, 1)−1. Higgs: ϕ ∼
(1, 2)+1/2 (HIGGS-PROJ, MASS-PRIOR, CONS1).

Theorem 10 Gauge structure and kinetic terms.
Local gauge redundancy with compact factors and power
counting (CONS1) uniquely fixes the Yang–Mills kinetic
terms and minimal couplings:

Lgauge = −
1

4
GaµνG

aµν − 1

4
W i
µνW

iµν − 1

4
BµνB

µν ,

with field strengths Gaµν ,W
i
µν , Bµν and covariant deriva-

tive Dµ = ∂µ − ig3T aGaµ − ig2τ iW i
µ − igY Y Bµ.

Fermion sector (minimal coupling).

Lferm =
∑
ψ

ψ̄ iγµDµψ for ψ ∈ {qL, uR, dR, ℓL, eR}.

Higgs sector (renormalizable, gauge invariant).

LH = (Dµϕ)
†(Dµϕ)−µ2 ϕ†ϕ−λ(ϕ†ϕ)2, ϕ ∼ (1, 2)+1/2.

(64)

Lemma 2 Yukawa uniqueness at d ≤ 4. Given the
chiral assignments above and gauge invariance, the only
renormalizable fermion–Higgs couplings are

LY = − q̄L Yu ϕ̃ uR − q̄L Yd ϕdR − ℓ̄L Ye ϕ eR + h.c.,

with ϕ̃ = iσ2ϕ∗. No other d ≤ 4 gauge-invariant,
Lorentz-invariant fermion operators exist.

Higgs as carrier of the preserved mode. Consistent
with minimality (HIGGS-PROJ, MASS-PRIOR) and
Axiom 24, the Higgs doublet is assigned as the unique
low-energy carrier of the preserved angular mode. This
assignment leaves the renormalizable SM operator basis
unchanged, but explains the stability of the Higgs mass
parameter against leading hard sensitivity: the locked
mode cannot be tilted by projection of short-wavelength
fluctuations.
The assignment follows from ZETA–POS: the

preserved line supplies the unique global angular mode.
Proof (sketch). List all fermion bilinears ψ̄LϕψR and

ψ̄Lϕ̃ψR; require invariance under each factor of GSM.
Color invariance forces q̄L(· · · )uR, q̄L(· · · )dR singlets
only via color contraction. Weak SU(2) invariance

requires doublet–doublet→ singlet via ϵij for ϕ̃, or δij for
ϕ. Hypercharge conservation fixes the three structures
written; any alternative choice fails Y -sum or SU(2)
index contraction. Quartic/derivative fermion operators
are d > 4 (forbidden by CONS1). □
SSC–CP selection rule. Convention. Under CP,

Φ is odd and Qtop is odd, so ΦQtop is CP–even.

Consequently, a bare θ GG̃ term is not admitted in
SSM; the only topological coupling is through the sorting
sector, Eqs. (3)–(4).
Strong–CP neutrality (SSC feedback) and axial

clean–up. By Axiom 23 and the neutrality sum rule
(87), the global contribution of the QCD topological
density is erased in screened regimes, implying θQCD → 0
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without introducing new propagating fields. The physical
strong–CP parameter is

θ̄ ≡ θQCD + arg detMq,

withMq the quark mass matrix formed from the Yukawas
in LY . As in standard field theory, an overall anomalous
U(1)A rephasing of quark fields can be chosen to remove
arg detMq, while the relative left–right misalignment
responsible for the CKM phase is unaffected.

Corollary 2 Strong–CP neutrality in SSC. Under
Axiom 23 and (87), the gauge vacuum angle satisfies
θQCD → 0 in screened regimes. Choosing the overall
anomalous U(1)A rotation to set arg detMq = 0 then
yields θ̄ = 0, while preserving the CKM source of weak
CP violation.

Proof (sketch). Axiom 23 extends the Φ-constraint
source by Qtop; exterior neutrality enforces the sum rule
(87), which cancels the net topological angle, θQCD → 0.
The remaining phase arg detMq is removed by the overall
anomalous U(1)A rephasing. Since the CKM phase
resides in the relative biunitary misalignment of Yu, Yd,
it survives unchanged.

Electroweak symmetry breaking (EWSB) and masses.

For µ2 > 0, ⟨ϕ⟩ = (0, v/
√
2)⊤ with v =

√
µ2/λ. Define

W± = (W 1∓iW 2)/
√
2, and Aµ = sin θW W 3

µ+cos θW Bµ
with tan θW = gY /g2. Mass relations:

MW = 1
2g2v, MZ = 1

2v
√
g22 + g2Y , Aµ massless,

Q = T3 + Y.

Proposition 2 (BEH via θ–Φ alignment) In SSC,
gauge bosons whose background-field directions would
rotate the preserved angular mode (ANG–POS) are
resisted by the elliptic Φ constraint and acquire mass
(W, Z). The unbroken combination (photon) is aligned
with the θ–Φ gyroscope and remains massless.

Interpretation. The Higgs doublet carries the preserved
mode (ANG–POS). The Φ sector supplies local
enforcement (slice-wise locking), while θ provides the
global orientation (neutralized). Massiveness = “tries to
tilt the preserved angle”; masslessness = “passes through
without torque.”

Fermion masses: mu = Yu v/
√
2, md = Yd v/

√
2,

me = Ye v/
√
2 (generation matrices diagonalized by

biunitaries; CKM/PMNS from misalignment).

Accidental symmetries and CP phases. At d ≤ 4 the
renormalizable SM Lagrangian enjoys accidental global
U(1)B and U(1)L symmetries. Baryon/lepton violation
first appears at d = 6 (e.g. QQQL/Λ2) and d = 5
(Weinberg operator), respectively. Complex Yukawas
contain physical CP phases: for three generations, one
CKM Dirac phase (quarks) and, for Majorana neutrinos,
two additional Majorana phases in PMNS.

Proposition 3 Completeness at d ≤ 4. With the
field content above, all Lorentz- and gauge-invariant
renormalizable operators are exhausted by Lgauge +
Lferm + LH + LY . Baryon- or lepton-number–violating
operators first appear at d = 5, 6 (e.g. Weinberg
operator), hence excluded by CONS1.

Interpretation (SSC). MASS-PRIOR and HIGGS-PROJ
identify Yf as encoders of substate mass parameters;
the Higgs doublet is the minimal projection channel.
Together with the anomaly-fixed charges (Sec. VIII), this
yields the full SM Lagrangian from SSC axioms, with no
external input.

XI. NEUTRINO SECTOR FROM SSC AXIOMS
(DIRAC AND MAJORANA)

Field content. Extend the fermion set by three
gauge-singlet right-handed neutrinos NR i ∼ (1, 1)0, i =
1, 2, 3. This preserves anomaly cancellation (singlets) and
renormalizability (CONS1).
General renormalizable Lagrangian. The most
general d ≤ 4 neutrino terms consistent with GSM and
Lorentz symmetry are

Lν = − ℓ̄L Yν ϕ̃ NR − 1
2 N

c
RMRNR + h.c. (65)

with ϕ̃ = iσ2ϕ∗, Yν a complex 3×3 Yukawa matrix, and
MR a complex symmetric 3×3 Majorana mass matrix for
the singlets. No other renormalizable neutrino operators
exist (by the same uniqueness reasoning as Lemma 4).

Masses after EWSB. With ⟨ϕ⟩ = (0, v/
√
2)⊤, define

the Dirac mass matrix mD = Yν v/
√
2. In the (νL, N

c
R )

basis the neutral-fermion mass matrix is

Mν =

(
0 mD

m⊤
D MR

)
.

Two limiting cases:

• Dirac limit (MR = 0): lepton number conserved,
light neutrinos are Dirac with mν = mD.

• Majorana (Type-I seesaw) (∥MR∥ ≫
∥mD∥): block-diagonalizing, mlight

ν ≃
−mDM

−1
R m⊤

D, mheavy
ν ≃ MR. Lepton number

is violated by two units.

Mixing. Diagonalizing mlight
ν and the charged-lepton

mass matrix yields the PMNS matrix UPMNS in the
charged current. Phases differ between Dirac and
Majorana cases (two extra Majorana phases in the
latter).
Weinberg operator from Type-I seesaw. Introduce

heavy Majorana singlets NR,

L ⊃ − ℓ̄L yν ϕ̃ NR −
1

2
N c
RM NR + h.c.
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Tree-level integrating out NR gives

NR ≃ −M−1y†ν ϕ̃
†ℓL,

Leff = 1
2 (ℓLϕ̃)κ (ℓLϕ̃) + h.c.,

κ = yνM
−1 y⊤ν .

(66)

After EWSB, mν = κ v2/2. For three Majorana
neutrinos the PMNS matrix has 3 angles, 1 Dirac CP
phase, and 2 Majorana phases; for Dirac neutrinos the
two Majorana phases are unphysical.

Integrating out heavy NR gives at low energy the
dimension-5 operator L5 = 1

2ΛL
(ℓ̄cL ϕ̃

∗)(ℓL ϕ̃) + h.c. with

ΛL ∼ MR, which reproduces mlight
ν above. This is

consistent as an effective description but, by CONS1,
we keep the renormalizable UV completion (65) in the
fundamental Lagrangian.

Proposition 4 (SSC compatibility) Adding three
gauge–singlet right–handed neutrinos NR i ∼ (1, 1)0 and
the renormalizable neutrino Lagrangian (65) preserves
all SSC axioms used for the SM sector (AM1, NA-low,
CONS1, CHARGE1). Gauge and mixed anomalies
are unchanged, and renormalizability is maintained.
The Dirac limit corresponds to MR = 0; the Majorana
(Type-I seesaw) limit corresponds to MR ̸= 0.

XII. QUANTITATIVE OUTPUTS FROM SSC

A. Families from rotational multiplicity

Theorem 11 (Families = 3 (minimal multiplicity))
FAM-PROJ + rotational irreps on the projection kernel
⇒ minimal nontrivial multiplicity dim(ℓ=1) = 3. Larger
ℓ violates minimality (CONS1 low-energy parsimony).

Lemma 3 (GC–SSC toy-kernel instantiation)
At a reference scale µ0, assuming uniform W on
S ≃ S2 × S1, ρres = ρ0(µ0) and K = ξ(µ0), Axiom 21
implies

1

g21(µ0)
= κ

(
5
3ρ0+

5
3βξ

)
,

1

g22(µ0)
=

1

g23(µ0)
= κ

(
ρ0+βξ

)
,

hence g21 : g22 : g23 = 5
3 : 1 : 1 at µ0.

B. Cosmological constant from Λ-AVG

Theorem 12 (Λ = αH2/c2 with α = 2 (toy kernel))
A homogeneous residual ρ∞res = χρcrit on CB∞ yields
Λ = 3χH2/c2. Toy-kernel weighting χ = 2/3⇒ α = 2.

Toy-kernel derivation of Λ = αH2/c2 and slip
comment

Assume the projection kernel coarse-grains over a
Hubble patch of radius RH = c/H and enforces

slice-neutrality
∫
(ρ − ε) d3x = 0 by assigning a

homogeneous vacuum piece εvac = α′ ρc, with ρc =
3H2/(8πG). Then

Λ =
8πG

c2
ρΛ =

8πG

c2
α′ρc =

3α′

c2
H2 ≡ α

c2
H2, α = 3α′.

A specific “toy” choice with α′ = 2/3 gives α = 2. We
view this as an attractor during epochs where the kernel
tracks H, not an exact identity at all times; otherwise
a pure H2-tracking Λ would be tensioned by late-time
ΛCDM fits.
Scalar slip. In the screened regime, operators that

could generate anisotropic stress (and hence Φ−Ψ ̸= 0),
such as (∇i∇jΦ)2/Λ2 or mixings with matter velocity
potentials, are suppressed by the screening scale, so
Φ−Ψ = 0 +O(ϵscr).

C. Yukawas from the derived kernel W

The renormalizable structures are unique (Lemma 4).
What remains is to compute the entries of the Yukawa
matrices from SSC data. Let ΨLi (σ) and ΨRj (σ) denote
the family-supported fiber profiles for the left- and right-
chiral fermions in a given SM sector (f ∈ {u, d, e, ν}),
and let PH(σ) pick out the Higgs projection channel.
The SSC prediction for the Yukawa entry is the kernel-

resolved fiber overlap.

(Yf )ij(x;µ) = λf (µ)

∫
S
dµ(σ)W (x, σ;µ)

× PH(σ)ΨLi (σ)Ψ
R
j (σ).

(67)

Lemma 4 ( 0.7Uniqueness of renormalizable Yukawa
structures]
In the SU(3)c × SU(2)L × U(1)Y Standard Model

with one scalar doublet H ∼ (1,2)+1/2, the only
gauge–invariant, Lorentz–invariant, renormalizable (d ≤
4) fermion mass operators are, up to unitary field
redefinitions in family space,

Od = Q̄LH dR, Ou = Q̄L H̃ uR, Oe = L̄LH eR,
(68)

with H̃ := iσ2H
∗. If gauge–singlet right–handed

neutrinos are present, NR ∼ (1,1)0, then also

OD
ν = L̄L H̃ NR (d = 4), OM

ν = 1
2 N

c
RMRNR (d = 3)

(69)

are allowed. No additional independent renormalizable
Yukawa structures exist.

List the irreps and hypercharges (suppressing family
indices):

QL ∼ (3,2)+1/6, uR ∼ (3,1)+2/3, dR ∼ (3,1)−1/3,
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LL ∼ (1,2)−1/2, eR ∼ (1,1)−1,

H ∼ (1,2)+1/2, H̃ ∼ (1,2)−1/2.

Gauge invariance and d ≤ 4 restrict fermion bilinears
to one left–right pair times one scalar (or a Majorana
singlet mass). Consider all possibilities:

Color. Any bilinear containing colored fermions must
contract a 3 with a 3. Since QL, uR, dR transform as 3,
only Q̄L(3) · · · (uR/dR)(3) is admissible. Thus colored
Yukawas must be of the schematic form Q̄L(· · · )uR or
Q̄L(· · · )dR.
SU(2)L. The Lorentz scalar Q̄LuR is an SU(2) doublet

(2); to make an SU(2) singlet we must multiply by an

SU(2) doublet: either H or H̃. The product 2 ⊗ 2 =
1⊕ 3 admits an SU(2) singlet. Hence exactly one scalar
doublet factor is required. The same argument applies
to Q̄LdR and to L̄LeR.
U(1)Y . Hypercharge must sum to zero. For down type:

Y (Q̄L) + Y (H) + Y (dR) = (−1
6 ) + ( 12 ) + (− 1

3 ) = 0

⇒ Q̄LHdR,

Y (Q̄L) + Y (H̃) + Y (uR) = (−1
6 ) + (− 1

2 ) + ( 23 ) = 0

⇒ Q̄LH̃uR,

Y (L̄L) + Y (H) + Y (eR) = (+1
2 ) + ( 12 ) + (−1) = 0

⇒ L̄LHeR.

No other hypercharge–neutral choice exists with H or

H̃ at d = 4.
Neutrinos. Without NR, a renormalizable Dirac term

is impossible; the leading operator is the dimension-5

Weinberg operator (L̄LH̃)(H̃†LcL). With NR ∼ (1,1)0,

the Dirac term L̄LH̃NR is allowed. Since NR is a gauge
singlet, a Majorana mass 1

2N
c
RMRNR is also allowed at

d = 3.
Completeness. Any other d ≤ 4 Lorentz scalar

built from two fermions and H’s is either (i) not gauge
invariant by the hypercharge/representation checks
above, (ii) a linear combination of the listed operators
under SU(2) index contractions (the two possible 2 ⊗
2 → 1 contractions differ by an overall sign and
field redefinitions), or (iii) vanishes by Fermi statistics.
Four–fermion terms are d = 6; baryon– or lepton–number
violating renormalizable terms would require additional
fields or gauge factors not present.

Therefore the Yukawa operator basis at d ≤ 4 is unique
up to family rotations, as stated.

where the (scale-dependent) overall factor λf (µ)
absorbs conventional normalizations and running from
GC–SSC coarse-graining. Eq. (XIIC) is the derived
version of the earlier illustrative formula: when W is
uniform on S (Lemma ??) and ΨL,R are narrow wavelets,

TABLE I. Benchmark flavor observables and an initial SSC
demonstration run. Targets: PDG’24 (quarks) and NuFIT
(leptons). The SSC demo uses the structured kernel W of
Sec. III with simple zonal basis functions; seeds used are
(su, sd) = (922, 4060) and (se, sν) = (8530, 10795). Values
here are illustrative and not tuned.

Observable Target (world avg.) Initial SSC–demo

Quark sector (CKM moduli)
|Vud| 0.97367(32) 0.9802
|Vus| 0.22431(85) 0.1886
|Vub| (3.82±0.20)×10−3 6.06×10−2

Lepton sector (PMNS, normal ordering)
sin2 θ12 0.303 0.3388
sin2 θ23 0.572 0.5601
sin2 θ13 0.0220 0.0443
∆m2

21 [eV
2] 7.41×10−5 1.36×10−3

∆m2
31 [eV

2] 2.511×10−3 matched by construction

Notes. (i) Quark targets from PDG 2024:
|Vud| = 0.97367± 0.00032, |Vus| = 0.22431± 0.00085, and

|Vub| = (3.82± 0.20)× 10−3. (ii) Lepton targets representative
of NuFIT global fits (normal ordering). (iii) The “SSC–demo”
column is a single seed point to show the pipeline end-to-end;
a proper scan with uncertainty propagation will replace this

column.

one recovers the familiar Gaussian-like textures as a
symmetry/zero-gradient limit. Away from that limit the
full shape of W determines the hierarchical pattern.

Non-toy overlaps from the derived kernel on S3

To demonstrate that textures do not rely on toy
ansätze, we solve Eq. (13) on S3 with a zero–mean
zonal bias V (χ) = εZ2(χ) and construct Yij =∫
S3dΩW (χ)Li(χ)Rj(χ) from three orthonormal “left”
and “right” profiles drawn from the span {Z0, Z2, Z4}
(random orthogonal rotations in that subspace). Com-
pared to the uniform kernel (nearly diagonal overlaps),
the structured solution produces sizable off–diagonal
entries and a hierarchical singular–value spectrum Y =
UΣV † with (Σ/Σmax) ≪ 1 for the subleading modes.
A PDG–style (phase–blind) extraction from U yields
nontrivial (θ12, θ23, θ13), illustrating how SSC’s derived
kernel induces mixing without hand–imposed textures.

Validation and seeds. We orthonormalize three L/R
profiles from the span {Z0, Z2, Z4} with the exact S3

measure and form Yij =
∫
WLiRj dΩ. Orthogonality

and normalization are verified numerically (< 10−8

weighted error). For the demo table we used seeds
(su, sd) = (922, 4060) and (se, sν) = (8530, 10795);
variations of seeds rotate textures within the same
mechanism.

Scope. These angles and singular values are illustrative
(single seed, no tuning), obtained from a derived
kernel on S3 with a modest zonal bias; a quantitative
CKM/PMNS fit using the sameW is deferred to Phase 3.

Toward quantitative fits.
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TABLE II. Down-sector slice from a derived kernel W on S3

(zonal bias; seed sd = 4060). Overlaps Yij =
∫
WLiRj dΩ

are formed from orthonormal L/R profiles in the span
{Z0, Z2, Z4}. Shown are phase-blind mixing angles from U
and singular values from Y = UΣV †. Values are illustrative
(single seed, no tuning).

θ12 θ23 θ13

Angles (deg) 74.1 56.3 1.30

σ1/σmax σ2/σmax σ3/σmax

Singulars 1.000 0.966 0.925

Toward quantitative fits. Given Yij =∫
S3 W (χ)Li(χ)Rj(χ) dΩ, a full CKM/PMNS analysis
proceeds via SVD of Yu,d,e,ν with phase scans and
a Bayesian sampler on kernel/basis seeds, returning
posteriors for angles, phases, and mass ratios with
propagated numerical/systematic uncertainties. We
leave the full fit to future work and present here only
illustrative, phase-blind textures from derived (non-toy)
W .

From a derived kernel to Yukawas, CKM/PMNS,
and a Bayesian fit

Setting and measure. All integrals are over zonal S3

with dΩ = 4π sin2χdχ. The derived kernel W (χ) is the
positive, normalized solution of Eq. (13) (main text).
Unless stated otherwise, orthonormality is with respect
to ⟨f, g⟩ :=

∫
f(χ)g(χ) dΩ.

Orthonormal profile subspaces (sector by sector). Fix
a compact subspace B = span{B1, B2, B3} of smooth
zonal functions (e.g. {Z0, Z2, Z4}). Construct left/right
orthonormal triplets {Li}3i=1, {Rj}3j=1 by applying
independent SO(3) rotations to the Gram–Schmidt
orthonormalized {Bk}:

Li =

3∑
k=1

(QL)ik Bk,

Rj =

3∑
k=1

(QR)jk Bk

with QL, QR ∈ SO(3).
By construction ⟨Li, Lj⟩ = δij and ⟨Ri, Rj⟩ = δij .
Yukawa overlaps (geometry of W ). Define the

sectoral overlap (Yukawa) matrix

Yij =

∫
S3

W (χ)Li(χ)Rj(χ) dΩ. (70)

Basic properties: (i) Y depends on the shape of W
within B; (ii) overall rephasings Li → eiαiLi, Rj →
eiβjRj leave |Y | unchanged and are handled by SVD and
field rephasings; (iii) orthonormality of L/R ensures Y
captures overlaps rather than norms.

Masses and mixings via SVD. Compute the singular
value decomposition

Y = U ΣV †, Σ = diag(y1, y2, y3), y1≥ y2≥ y3>0,
(71)

where U, V ∈ U(3). Interpretation: yk are the
(dimensionless) Yukawa couplings; the left mixings come
from U and the right mixings from V . For quarks, masses

follow asmui
= v√

2
y
(u)
i , mdi =

v√
2
y
(d)
i (v the Higgs vev).

For leptons, analogous statements hold (with Majorana
caveats for ν).
From sectors to CKM/PMNS. Let Uu and Ud be the

left-unitaries from the up/down SVDs. Then

VCKM = U†
u Ud. (72)

Similarly, with Ue, Uν ,

UPMNS = U†
e Uν , (73)

up to unphysical rephasings; for Majorana ν there are
two extra Majorana phases (irrelevant for oscillations).
Phase–blind angle extraction (PDG convention).

Given a unitary U (CKM or PMNS) rephased to PDG
form, the three mixing angles are recovered as

s13 = |U13|, c13 =
√

1− s213, s12 =
|U12|
c13

, s23 =
|U23|
c13

.

(74)
The Jarlskog invariant and CP phase obey

J = Im
(
U11U22U

∗
12U

∗
21

)
= s12s23s13 c12c23c

2
13 sin δ,

(75)
so δ = arcsin

(
J/(s12s23s13c12c23c

2
13)
)

after fixing the
PDG phase convention by left/right rephasings (diagonal
phases that leave observables unchanged).
Permutation and hierarchy handling. The {yi} and

rows/columns of U, V may be permuted without
changing Y . We fix a canonical order by sorting y1≥ y2≥
y3 and, if needed, applying permutation matrices PL, PR
so that (U, V,Σ)→ (UP †

L, PLΣP
†
R, V P

†
R). This realizes a

unique “largest-to-smallest” labeling across sectors.
Quantitative fit: likelihood, parameters, priors. With

a fixed, derived W , each sector depends only on the
left/right rotations QL, QR ∈ SO(3) in the chosen basis
B. Parameterize each by three Euler angles; for quarks
the fit parameters are

θ = (α
(u)
1,2,3, β

(u)
1,2,3, α

(d)
1,2,3, β

(d)
1,2,3),

twelve angles in total. (Leptons analogous.) Given θ,
build L/R in each sector, form Y , do the SVD, construct
CKM/PMNS, then extract observables

Oth(θ) =
{
|Vus|, |Vcb|, |Vub|, md

ms
, ms

mb
, mu

mc
, mc

mt
, JCKM

,
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TABLE III. CKM magnitudes from a derived kernel W on
S3; best-fit vs. experiment. Config: parent dim= 11, complex
subspaces (unitary columns), no sector split, Nχ = 161, seed=
123.

Observable Best-fit Exp. value Pull

|Vus| 0.224313 0.2243±0.0008 +0.02
|Vcb| 0.042311 0.0422±0.0015 +0.07
|Vub| 0.003922 0.00394±0.00050 −0.04

χ2 0.007 (3 observables)

(or the PMNS analogue with angles and ∆m2 ratios if
desired). Define a Gaussian log-likelihood

χ2(θ) =
∑
k

(
Oth,k(θ)−Oexp,k

)2
σ2
k

, L(θ) ∝ e−χ
2(θ)/2.

(76)
Natural, uninformative priors are uniform over each
SO(3) (Euler angles with the Haar measure); for mass
ratios we do not introduce sector normalization nuisances
at this stage (since v fixes the overall scale).

Bayesian scan / optimization (minimal recipe). A
practical two–stage procedure: (i) coarse global scan with
104−105 random draws of θ (Haar measure), keep the
top Nkeep by χ2; (ii) local refinement from the best seeds
using LM/BFGS or a short MCMC to estimate credible
regions for the angles and derived observables. Report
best–fit and the χ2/dof.
Diagnostics and acceptance. We recommend

the following checks: (i) orthonormality errors
maxi̸=j |⟨Li, Lj⟩| < 10−8 and same for R; (ii) SVD
conditioning: κ(Y ) < 1010 (double precision safe); (iii)
permutation consistency across sectors after sorting
{yi}; (iv) stability of the best–fit against changes of the
basis B within the same dimensionality; (v) phase–blind
pass first (using (74)), then include J via (75).

Outcome. This closes the loop from a derived kernel
W to a quantitative CKM/PMNS comparison: W⇒Y ⇒
(U, V,Σ) ⇒ VCKM, UPMNS ⇒ χ2/dof. A satisfactory fit
(e.g. reproducing |Vus|, |Vcb|, |Vub| and mass ratios within
uncertainties) validates the kernel–overlap mechanism for
flavor; failure to do so falsifies this sector of SSC.
Fitted magnitudes.

|VCKM| =

(
0.97451 0.22431 0.00392
0.22422 0.97362 0.04231
0.00769 0.04179 0.99910

)
.

Methods (concise). We solve the stationary kernel
on S3 via the projected–Newton scheme (Sec. III),
construct a consecutive-mode parent basis {Zℓ}10ℓ=0
orthonormal under the exact S3 measure, and form

K
(s)
ab =

∫
W (s)BaBb dΩ for s ∈ {u, d} (no sector split

here). For each sector we draw complex 3-dimensional
left/right subspaces from Haar-U(11), Y (s) = L†

sK
(s)Rs,

compute SVDs Y (s) = UsΣsV
†
s , and set VCKM = U†

uUd.
A global random scan (1.2 × 105 proposals) is followed
by a QR-projected accept-if-better local refinement (5k

steps). The configuration in Tab. III reaches the quoted
χ2 without tuning phases or imposing textures.

D. Worked example: Gaussian kernel overlaps and
CKM-like textures

Consider a normalized Gaussian kernel on an internal
1D circle coordinate σ ∈ [0, 2π):

W (x, σ;µ) =
1√

2πs2(µ)
exp
[
− (σ−σx)

2

2s2(µ)

]
,

s(µ) ↓ with µ.

(77)

and take left/right profiles (one per family) sharply
peaked at σLi , σ

R
j :

ΨLi (σ) =
1

(πℓ2L)
1/4

exp
[
− (σ−σL

i )2

2ℓ2L

]
,

ΨRj (σ) =
1

(πℓ2R)
1/4

exp
[
− (σ−σR

j )2

2ℓ2R

]
eiθij .

(78)

The kernel-induced Yukawa is the overlap (Yf )ij =
λf (µ)

∫
dσW ΨLi ΨRj . Completing the square yields a

closed form:

(Yf )ij = λf (µ)N exp
[
− (σL

i −σR
j )2

2(ℓ2+s2)

]
exp
[
iθij
]
,

ℓ2 := ℓ2L + ℓ2R, N = (2π(ℓ2 + s2))−1/2.

(79)

Hence hierarchies arise from geometric separations in
the internal coordinate. As a concrete toy choice:

(σL1 , σ
L
2 , σ

L
3 ) = (0, 1.2, 2.6),

(σR1 , σ
R
2 , σ

R
3 ) = (0.3, 1.6, 2.9),

with (ℓ, s) = (0.35, 0.30) and phases

θij =

θ 0 0
0 θ 0
0 0 θ

 .
gives (in arbitrary units, absorbing λfN )

Yf ≈

e−0.18 e−0.44 e−1.32

e−0.44 e−0.18 e−0.44

e−1.32 e−0.44 e−0.18

· diag(eiθ, 1, 1). (80)

After biunitary diagonalisation U†
LYfUR =

diag(y1, y2, y3), the mixing matrix VCKM = Uu †
L UdL

inherits (i) hierarchical off-diagonal entries controlled
by separations, and (ii) a physical CP phase from θ
(unremovable by family-unitary rephasings once two
sectors carry different phase patterns). Varying (ℓ, s)
emulates running with µ via the kernel width s(µ),
yielding realistic hierarchies without imposing textures
by hand.
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Textures, ranks, and phases. Small relative displace-
ments (or misalignments of fiber lobes) naturally yield
hierarchies and small mixings:

(Yf )ij ∼ exp
[
− 1

4 ∆
⊤
ij Σ

−1 ∆ij

]
(narrow-lobe regime),

(81)
with ∆ij a geodesic displacement on S and Σ an effective
covariance coming from W PH . Complex phases in ΨL,R

and in the fiber channel of PH give physical CKM/PMNS
phases after biunitary diagonalization.

Alignment and minimality. Because the same W
weights all channels, partial alignment between the up-
and down-type sectors produces small CKM angles;
misalignment in the lepton sector can yield large PMNS
angles. Rank properties follow from the number of
independent lobes supported by {ΨLi } and {ΨRj }; in
the minimal SSC picture (FAM-PROJ) three families
arise from the ℓ=1 rotational multiplicity, guaranteeing
rank≥ 2 generically, with small determinants emerging
from near-alignments.

RG and locality. The scale µ enters through
the coarse-grained kernel W (x, σ;µ) and the channel
normalization λf (µ). Matching to the MS-like one-loop
running (App. H) provides a consistent identification of
µ without adding operators beyond d ≤ 4.

Practical pipeline. For phenomenology, solve the
kernel equation (Sec. III C) on a symmetry-reduced
fiber (e.g. Klein-identified hypersphere) to obtain W ,
choose family wavelets consistent with FAM-PROJ, and
evaluate Eq. (XIIC). The toy Gaussian overlaps used
earlier are then recovered by taking the uniform-W limit
or the narrow-lobe approximation, but all quantitative
fits should use the derived W .

XIII. COSMOLOGICAL LINEAR
PERTURBATIONS (SVT)

On CB∞: scalar slip Φ − Ψ = 0 (negligible higher

ops), vectors decay, tensors obey ḧij+3Hḣij−∇2hij = 0
(luminal).

XIV. OBSERVATIONAL FITS

Shapiro delay: ∆t = (1 + γ) 2GMc3 ln 4r1r2
b2 with γ = 1.

GW phasing: no −1PN dipole; GR quadrupole leading.
Mercury-like periastron: ∆ω = 6πGM/[a(1− e2)c2]. For
a full worked Mercury number, see App. G.

Consistency checks (not unique predictions). The
following items verify that SSC reduces to GR/SM in
tested regimes: PPN γ = β = 1, cGW = c, absence of
dipole radiation, and standard Solar System observables.

Cassini γ extraction (example) and prediction table

The one-way Shapiro delay for a signal skimming the
Sun is

∆t = (1 + γ)
2GM⊙

c3
ln
4r1r2
b2

.

Using the metric above with γ = 1 reproduces the GR
time delay. Cassini’s Doppler tracking constrains |γ −
1| ≪ 10−4; our screened limit gives exactly γ = 1.

TABLE IV. Key predictions vs. current bounds (screened
regimes).

Observable Bound (rep) SPSP–SSC pred

PPN γ, β
γ ≃ 1
β ≃ 1

γ = 1
β = 1

Preferred frame (α1,2) |α1,2| ≪ 10−4 0

GW dipole (−1PN)

≲ 10−3

of quadrupole Absent

GW speed cT

|cT /c− 1|
≲ 10−15 cT = c

Slip Φ−Ψ
consistent with 0
(large scales) 0 +O(ϵscr)

Fifth force (Yukawa)
none detected
(Solar System)

none
(no propagator)

XV. CONSISTENCY CHECKS &
FALSIFIABILITY

Consistency checks (not unique predictions). The
following items verify that SSC reduces to GR/SM in
tested regimes. These are consistency checks, not distinct
predictions.

• No −1PN dipole radiation (Sec. VI; App. E).

• Gravitational-wave speed cGW = c (Thm. 2;
Sec. VI).

• PPN parameters γ = β = 1 (Sec. VII; App. D).

• No extra low-energy compact gauge factors beyond
SU(3)× SU(2)× U(1) (Sec. VIII).

• Unique hypercharges from anomaly cancellation
(RREF) plus the cubic constraint (Sec. VIII).

What would falsify SSC. Any of the following would
contradict core SSC claims:

• A confirmed deviation cGW ̸= c from multi-
messenger timing beyond instrumental/systematic
explanations.

• Evidence for dipole gravitational radiation in
compact binaries inconsistent with tensor-only
emission.

• Discovery of additional low-energy compact gauge
factors beyond SU(3)× SU(2)× U(1) that cannot
be Higgsed away.
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• A robust nonzero QCD angle incompatible with
the Φ–neutrality extension (e.g., neutron EDM far
above the SSC expectation).

Falsifiable Higgs hooks (SSC form factor). (i) A
momentum-dependent softening of high-pT Higgs tails
∝ FW (pT ℓres); (ii) a mild tempering of off-shell WLWL

scattering consistent with the same FW ; (iii) a small,
scale-dependent shift in the extracted Higgs self-coupling
at high invariant mass, bounded by the ℓres inferred from
(i).

XVI. QUANTUM FRAMEWORK

One loop with a derived form factor. Expanding
the stationary W on S3 in orthonormal zonal modes,

W =
∑L
ℓ=0 cℓZℓ with

∑
ℓ c

2
ℓ = 1, we define spectral

weights wℓ = c2ℓ and eigenvalues λℓ = ℓ(ℓ + 2), and set

FW (kℓres) =
∑
ℓ wℓe

−λℓ(kℓres)
2

so that FW (0) = 1 and
FW → 0 as k→∞. The Higgs 1-loop self-energy then
reads

δm2
H(ℓres) =

1

8π2

∫ ∞

0

dk k3 FW (kℓres)

×

[
6λ

k2 +m2
H

+
(9/4) g2

k2 +m2
W

+
(3/4) g′2

k2 +m2
Z

− 6y2t
k2 +m2

t

]
.

(82)

which is finite for any derived FW above and implies∣∣δm2
H

∣∣≲C/(16π2ℓ2res). Because FW = 1 +O((kℓres)2) at
low momenta, SM counterterms and β’s are recovered
for µℓres ≪ 1. We verify abelian Ward identities by
symmetric insertions; non-abelian STIs will be checked
diagram-by-diagram in Phase 3.

Minimal one-loop quantum completion (SSC). We
quantize SSC as an EFT with a BRST-invariant
gauge-fixed action; the 1PI effective action obeys the
Slavnov–Taylor identity S(Γ) = 0. The SSC kernel
enters loops only through a Lorentz-invariant form factor
FW (k ℓres) on internal lines, with FW (0) = 1 and
smooth UV falloff. For µ ℓres ≪ 1, one recovers SM
renormalization up to O((µℓres)2).
Worked 1-loop demo (Higgs mass). With a Gaussian

proxy FW (kℓres) = e−(kℓres)
2

, a scalar-loop contribution
to the Higgs 2-point in Euclidean space is

I(m, ℓres) =

∫
d4kE
(2π)4

e−k
2
Eℓ

2
res

k2E +m2

=
1

16π2

∫ ∞

0

dt
e−m

2t

(t+ ℓ2res)
2

=
1

16π2

[
1

ℓ2res
−m2em

2ℓ2resE1

(
m2ℓ2res

)]
.

(83)

with E1 the exponential integral. Summing SM

TABLE V. Sample values from the derived run (see Fig. ??).

ℓres [GeV−1] δm2
H [GeV2] Ĉ

1.0×10−4 −2.62×105 0.413

3.54×10−4 −1.87×104 0.370

1.25×10−3 −8.41×102 0.209

4.43×10−3 −8.04 0.025

1.57×10−2 +2.84×10−2 0.00110

5.00×10−2 +5.19×10−4 2.05×10−4

weights ci gives

I(m, ℓres) =

∫
d4kE
(2π)4

e−k
2
Eℓ

2
res

k2E +m2

=
1

16π2

∫ ∞

0

dt
e−m

2t

(t+ ℓ2res)
2

=
1

16π2

[
1

ℓ2res
−m2em

2ℓ2resE1

(
m2ℓ2res

)]
.

(84)

realizing “angular locking” (UV softness) with a finite
1/ℓ2res bound.
Consistency. Because FW = 1 + O((kℓres)2) at
low momenta, β-functions and counterterms match
the SM for µℓres ≪ 1. Ward/ST identities and
unitarity are preserved when FW is field-independent
and inserted symmetrically in loops (transversality
and optical-theorem checks carry through). We will
tabulate one-loop coefficients and numerical STI checks
in Appendix X; failure to satisfy these tests falsifies
Phase 3.
Derived bound (numerical, from W ). Using the

derived fluctuation spectrum of W on S3 (drop ℓ=0,
renormalize over ℓ ≥ 1), the one-loop Higgs self-energy
is finite and obeys∣∣δm2

H(ℓres)
∣∣ ≤ C

16π2 ℓ2res
, C ∼ O(10−1) here,

with a scan over ℓres ∈ [10−4, 5×10−2] GeV−1 yielding

Ĉ ∈ [2.0×10−4, 0.413] (median 0.106) for the SM weights
{6λ, 94g

2, 34g
′2,−6y2t } at µ∼mt. The decay of FW (kℓres)

follows from the dominance of the ℓ=2 mode in the
derived spectrum, with a small ℓ=4 tail.
Result (no figure). From the derived FW we obtain

|δm2
H | ≤ C/(16π2ℓ2res) with Ĉ ∈ [2.0×10−4, 0.413]

(median 0.106) over ℓres ∈ [10−4, 5×10−2] GeV−1; see
Tab. V.
We now establish the quantization procedure for

SSC. The guiding requirement is compatibility with
standard gauge-theoretic methods: background-field
BRST quantization, path integral consistency, and
renormalizability within CONS1. The distinctive SSC
ingredient is the presence of the kernel W (x, σ) and the
Φ-constraint sector, both of which must be implemented
in the measure and gauge-fixing.
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UV interpretation in SSC. In SSC the fundamental
quantum object is the kernel W (x, σ); a spacetime
metric emerges only after projection at finite resolution
ℓres. Thus a graviton field and its loops are effective
low-energy constructs. At fixed ℓres, projected correlators
acquire a kernel form factor FW (kℓres) that suppresses
large-k modes; the usual GR ultraviolet divergences
reappear only in the unphysical limit ℓres → 0. We
therefore treat GR as an EFT of the projected sector,
while the high-energy completion lives in the dynamics
of W rather than in a fundamental spin-2 field.

Deff
µναβ(k) = DGR

µναβ(k)FW (k ℓres),

FW (0) = 1, lim
k→∞

FW (k) = 0 .
(85)

A. Path integral with Φ-constraint

The SSC generating functional is

Z[J ] =

∫
Dgµν DΦD{ψ, ψ̄, Aµ, H} δ[CΦ]

× exp
{
i
(
Sgrav + Ssort + SSM + Sgf + Sgh + J ·Φfields

)}
.

(86)

where:

• Sgrav is the EH+GHY action (Sec. IV);

• Ssort imposes the Φ-constraint (ρ = ε);

• SSM is the SSC-derived Standard Model action
(Sec. IX);

• Sgf and Sgh are gauge-fixing and ghost terms (see
below);

• δ[CΦ] enforces the elliptic constraint on Φ,
suppressing unphysical modes from the path
integral.

The measure includes kernel-resolved fields, but the
kernel itself is not integrated over: it is a derived
functional fixed by the axioms and the variational
principle (Sec. III C).

B. Constraint neutrality and topological feedback

In the extended formulation of Axiom 23, the
constraint source includes the QCD topological density,

Scale separation. In (??)–(87), Qtop denotes the
coarse-grained (long-wavelength) topological density
resolved by the kernel on the slice Σt. Microscopic
instanton/sphaleron events remain as short-wavelength
structure; the constraint acts only on the coarse-grained
sector.

Integrating (??) over a spatial region V and applying
Gauss’ law with GAΦ exterior neutrality gives the
neutrality sum rule∫

V

[(ρ− ε) + ξQtop] d
3x = 0. (87)

Boundary condition. Choose V to enclose the support of
(ρ−ε)+ξQtop and lie inside a screened patch. GAΦ sets
Φ = 0 in the exterior; with identical Dirichlet data, the
outward normal derivative vanishes on ∂V , so

∮
∂V
∇Φ ·

dS = 0. Gauss’ law then gives Eq. (??).

Proposition 5 (Critical-line alignment) Under
ZETA–POS, global alignment to the critical line
implies θ → 0 (Option A), while local locking implies
the Φ neutrality sum rule (Option B). Since the
two implementations agree in screened regimes, the
strong–CP angle is neutralized without new propagating
fields, and instanton/anomaly physics at θ = 0 remains
intact.

Corollary 3 (Higgs positioning) If the preserved
global angular mode is assigned to the Higgs
(ANG–POS), then leading hard ultraviolet sensitivity
that would rotate this mode is projected out at leading
order. Residual electroweak and Yukawa effects govern
the observed running of the mass parameter, providing a
geometric route to electroweak stability without partner
particles.

In screened regimes the first term cancels by
construction, forcing the net Qtop contribution to
vanish globally. Thus the effective strong–CP angle is
dynamically neutralized,

θeff → 0, (88)

while local instanton physics and the axial anomaly
persist. No new propagating degrees of freedom are
introduced: Φ remains elliptic and external to the BRST
cohomology.
This neutrality can be viewed as critical-line alignment

in the zeta-aligned substrate (Axiom 25), with θ the
global orientation and Φ the local enforcement.
Implementation note. We implement the elliptic

constraint by an instantaneous quadratic form for Φ on
each slice,

SΦ =

∫
dt d3x

[
1

8πG (∇Φ)2−Φ J
]
, J := (ρ−ε)+ξQtop.

(89)
The Euler–Lagrange equation is ∇2Φ = 4πGJ with
Dirichlet data fixed by GAΦ. Eliminating Φ via its
Gaussian integral then yields the quadratic term of
Lemma 5 with the correct normalization and sign.

Lemma 5 (Nonlocal screening from Φ)
Eliminating the non-propagating Φ via its constraint
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produces an instantaneous (non-retarded) quadratic term
on each slice,

Seff ⊃ − 2πG

∫
dt

∫
d3x

∫
d3y J (t,x)∆−1(x,y)J (t,y),

J (t,x) ≡ (ρ− ε)(t,x) + ξQtop(t,x).
(90)

This term is CP–even. No linear θQtop term is
induced. Here ∆−1 is the Green operator of the spatial
Laplacian with the same boundary data as Φ, and Qtop

is the coarse-grained density.

Variation with respect to gluons introduces source
terms proportional to ∂µΦK

µ
CS (with ∂µK

µ
CS = Qtop).

We use ∂µK
µ
CS = Qtop, with a Chern–Simons current

Kµ
CS = ϵµνρσ

(
Aaν∂ρA

a
σ + g3

3 f
abcAaνA

b
ρA

c
σ

)
.

GAΦ and coarse-graining confine these to screened
regions, so long-range CP-odd observables (e.g. EDMs)
are unaffected, while local instanton effects survive at
short wavelengths.

C. BRST and background-field quantization

Gauge fixing proceeds as in conventional Yang–Mills
and GR, but with the constraint sector included.
Introduce BRST transformations s acting on the gauge
fields and ghosts:

sAµ = Dµc, sc = − 1
2 [c, c], sc̄ = B, sB = 0, (91)

with analogous rules for the gravitational diffeomorphism
sector. The nilpotency s2 = 0 is preserved because
Φ carries no independent propagating modes: sΦ = 0.
The background-field method is employed so that the
effective action Γ[gµν , Āµ] remains gauge-invariant under
background transformations.

EFT/BRST interface for the Φ–topology coupling

We extend the sorting sector by a gauge-invariant
topological density:

Ssort →
∫
d4x
√
−g
[
− Φ(ρ− ε+ ξQtop)

]
,

Qtop =
1

32π2
Gaµν G̃

aµν .

(92)

BRST acts trivially on the non-propagating Φ (sΦ =
0), and the extension preserves BRST invariance:
sSsort = 0 since sQtop = 0. Integrating out Φ
enforces the slice-wise neutrality constraint and yields a
quadratic, CP-even nonlocal term on each slice,

S
(Φ)
eff =

ξ2

2

∫
Σt

d3x d3y
√
hxhyQtop(t,x)G(x,y)Qtop(t,y),

(93)

where G is the Green operator of ∇2 with the same
boundary data as Φ. The coupling is instantaneous on
slices (elliptic) and compatible with foliation-preserving
diffeomorphisms; no new propagating mode appears and
causality (GA0) is unmodified.
Regularization and gauge invariance. We use a

gauge-invariant regulator for the Chern–Simons current
entering variations of Qtop; coarse-graining commutes
with BRST, and Φ does not enter the BRST
cohomology. Global anomalies (e.g. SU(2) Witten)
and their consistency conditions are unchanged by the
constraint sector.

D. Ward identities and unitarity

The presence of the kernel does not obstruct standard
identities. Inserting sources for BRST variations
yields the Slavnov–Taylor functional identity, ensuring
renormalizability and gauge-independence of physical
amplitudes. Unitarity follows from the BRST quartet
mechanism: negative-norm ghost states decouple from
the cohomology, leaving only physical modes (two
graviton polarizations, transverse gauge bosons, and
matter).
Projection-level protection of the Higgs mass. Ax-

iom 24 implies that the preserved angular mode
carried by the Higgs is locked under coarse-graining.
Consequently, the leading hard ultraviolet sensitivity
that would arise from fluctuations attempting to
rotate this mode is projected out at leading order.
Subleading contributions from electroweak gauge and
Yukawa sectors remain and govern the observed
running of the mass parameter. This protection
operates at the projection/kernel level and leaves the
BRST/Slavnov–Taylor identities unchanged.

E. One-loop structure (examples)

Strong–CP robustness (note). The Φ–neutrality ex-
tension couples only through a BRST-inert constraint
density; at one loop, counterterms preserve the CP
assignment of ΦQtop and do not introduce a propagating
scalar. A quantitative EDM forecast requires matching
to hadronic matrix elements and non-perturbative
effects, which we defer.
Full one-loop renormalization is left to future work,

but SSC accommodates the usual counterterm structure.
Illustrative examples include:

• QED vacuum polarization: Πµν(q) is computed
as in the SM, with the kernel entering only through
the definition of the bare gauge coupling at the
coarse-graining scale.

• Higgs self-energy: The divergent part is
local and canceled by δm2

HH
†H, consistent with
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CONS1. The hierarchy problem persists, to be
addressed at the SSC extension level (see Sec. ??).

• Graviton two-point function: In background-
field gauge, the one-loop divergence has the same
structure as in perturbative GR (terms ∝ R2).
SSC does not remove the non-renormalizability of
gravity, but embeds it as an effective field theory
controlled by GA2 and UNI-MET.

F. Observation as interaction: no collapse
postulate

As emphasized in Sec. III B, in SSC an “observation”
is simply an interaction/resolution event mediated by
the kernel. In the quantum functional integral,
this means conditional amplitudes (e.g. ⟨O⟩ given a
recorder state) are just correlators conditioned on
recorder sectors. No additional collapse dynamics is
required. The BRST path integral, together with kernel
resolution, provides both unitary scattering amplitudes
and Born-rule measurement probabilities (Sec. III F).

Summary. SSC admits a consistent BRST-quantized
path integral formulation. All standard gauge-theoretic
identities and unitarity mechanisms carry over. The
Φ-constraint is implemented via a delta-functional and
removes spurious scalar modes. One-loop structures
match those of the SM+GR effective field theory.
Most importantly, the kernel resolution principle unifies
scattering and observation, eliminating the need for an
independent collapse postulate.

Open questions (quantum). (1) Non-stationary kernel
evolution and gauge-fixing in the full BRST measure
with the Φ–constraint; (2) robustness of the strong-CP
suppression under loops and non-perturbative effects; (3)
explicit one-loop examples (self-energies, vertices) with
the SSC form factor FW ; (4) conditions for asymptotic
safety or other UV fixed-point behavior in the kernel
dynamics.

XVII. BLACK HOLES AS PROJECTION FIXED
POINTS

Intuition. In SSC no metric or graviton exists at
the substrate; black holes arise only after projection,
as fixed points of the coupled (geometry ↔ kernel)
dynamics. Matter focusing sharpens the projected state
and forms trapped surfaces, while the kernel’s finite
resolution moderates trans-Planckian modes and enables
evaporation.

Effective field equations. At low energies the Einstein
equations hold with an effective stress tensor that
collects ordinary fields, the Φ-constraint sector, and
kernel-gradient contributions:

Gµν [g] = 8πG
(
⟨Tµν⟩W + T (Φ)

µν + T (W )
µν

)
. (94)

Projected two-point functions acquire the kernel form
factor (Sec. XVI):

Deff
µναβ(k) = DGR

µναβ(k)FW (k ℓres),

FW (0) = 1, FW (k)→ 0 as k →∞.
(95)

with ℓres≡
√
β/ξ from the linear response of Eq. (13).

Recycling (evaporation) and feedback. For a quasi-
stationary, spherically symmetric hole of mass M ,

dM

dt
≃ −αH

1

G2M2

〈
Tgrey(ω,M)FW (ω ℓres(rh))

〉
ω
,

(96)
where αH encodes the species count and Tgrey are
the greybody factors. Low-frequency emission matches
Hawking’s result; high frequencies are suppressed by FW .
As M decreases, focusing relaxes and the projected state
returns energy to ordinary quanta (“recycling”).
Second-law heuristic. Let SBH = A/4G and SW =
−
∫
S W lnW dΩ. We conjecture a projection second law

d

dt

(
SBH + SW

)
≥ 0, (97)

which reduces to the standard area theorem in the
classical limit and accounts for information flow via the
kernel sector.
Open tasks. (1) Double-null collapse with a slice-wise

kernel solve to track ℓres(t) at the horizon; (2)
evaporation spectra with FW (ωℓres) and Page-curve
diagnostics; (3) constraints on ℓres from trans-Planckian
suppression and ringdown fits.

XVIII. COSMOLOGICAL CONSEQUENCES

We conclude by examining the implications of SSC
at the cosmological scale. The axioms, kernel, and
constraint sector imply characteristic departures from
a naive ΛCDM description, while reproducing its
leading-order dynamics.
Kernel dynamics beyond stationary runs. In cosmol-

ogy, W (x, σ) evolves on an FRW background rather
than a stationary slice. The mixed hyperbolic–elliptic
structure of Eq. (13) implies luminal characteristics in
x (GA0) with fiber diffusion in σ. A practical route is
to solve the χ–zonal truncation on S3 along FRW time
with a slice-wise normalization update and positivity
projection (as in App. A), then test tracking/freeze
behavior of the homogeneous mode and its imprint on
SVT perturbations. We defer those full-evolution runs
to a dedicated work.

A. Residual cosmological constant and tracking

The kernel resolution generically produces a vacuum
contribution, interpretable as an effective cosmological
constant Λeff . At the axiomatic level this arises because
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resolution/interaction does not cancel perfectly in the
open phase state: a residual offset remains.

Tracking vs freeze. Let ρΛ(a) denote the coarse-
grained vacuum energy density at scale factor a. Two
regimes are admissible:

• Tracking: ρΛ(a) scales with the dominant
matter/radiation component, so ΩΛ remains small
at early times and only becomes relevant recently.

• Freeze-out: ρΛ asymptotes to a constant once the
kernel reaches a resolution-limited state (“frozen
vacuum”).

In both cases the SSC prediction is a small, positive
late-time Λeff . GA2 (flux = content) requires that this
contribution is globally neutral with respect to Φ, so no
local Λ-hair arises; the effect is only cosmological.

B. Dark matter and dark energy as substrate
modes

SSC does not postulate new propagating fields for dark
sectors. Instead:

• Dark matter: effective clustering modes of the
open-phase substrate, appearing in the stress–
energy tensor as cold, pressureless contributions.

• Dark energy: the residual vacuum resolution, as
above.

This view reconciles the absence of direct-detection
signals with the universal gravitational coupling observed
at galactic and cosmological scales. Exterior neutrality
theorems (Sec. IV) guarantee that local experiments
remain blind to these substrate modes; only large-scale
averaging reveals them.

C. Klein hypersphere foliation

Spatial slices in SSC are compactified by a Klein-type
identification on the fiber, yielding a “hypersphere with
projective identification.” This construction is consistent
with UNI-MET and GA2. Consequences include:

• The global spatial topology is closed, but with
identification reducing the effective fundamental
domain.

• Possible observational signatures include matched
circles or specific multipole suppression in the
CMB.

The Klein hypersphere thus provides a natural large-scale
topology compatible with SSC.

D. Effective Friedmann equations

Averaging the SSC field equations on homogeneous,
isotropic slices gives

H2 =
8πG

3
(ρm + ρr + ρΛ)−

k

a2
, (98)

ä

a
= −4πG

3
(ρm + 2ρr − 2ρΛ), (99)

with ρm the substrate dark matter contribution, ρr the
radiation density, and ρΛ the residual vacuum. The
curvature index k encodes the hypersphere identification.
In the tracking regime, ρΛ(a) ∼ a−n with n = 3 or
4 depending on the dominant component; in the freeze
regime, ρΛ → const.

E. Observational outlook

SSC reproduces the ΛCDM background at leading
order, while suggesting distinctive signatures:

• Possible deviations in the high-z expansion rate if
ρΛ tracks.

• Suppression or alignment anomalies in the low-ℓ
CMB due to the Klein hypersphere topology.

• Potential deviations in growth of structure if sub-
strate dark matter interacts weakly with baryonic
matter through kernel-mediated couplings.

ZETA–POS elevates our metaphors to structure:
antiparticle redundancy, θ neutrality, and Higgs angular
stability become three manifestations of alignment to a
single critical line in the substrate.

Outstanding issues. Several problems remain open
for future work:

1. Hierarchy problem: SSC does not yet explain
the smallness of the Higgs mass parameter relative
to MPl.

2. Strong CP problem: no axionic sector has been
derived within the minimal SSC axioms.

3. Quantitative fits: precise numerical solutions for
W (x, σ) on the cosmological foliation are needed to
match CMB and LSS data.

Summary. SSC implies a cosmology consistent with
GR+SM at low energies, with dark matter and dark
energy emerging from the substrate rather than as new
particles or fields. The residual Λ, tracking/freeze
behavior, and Klein hypersphere topology yield testable
predictions beyond ΛCDM.
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XIX. CONCLUSIONS AND OUTLOOK

The SSC framework has been developed from first
principles: axioms and kernel construction, emergence
of GR and the SM, quantization via BRST and path
integral methods, and cosmological implications. The
central innovation is the kernel resolution principle,
which unifies scattering, observation, and measurement
without an external collapse postulate. Within this
scheme, GR arises as an effective geometric limit, the
SM gauge and charge assignments emerge from kernel
constraints, and cosmology is naturally embedded in the
substrate interpretation.

A further consequence is resolution of the strong–CP
problem. By extending the elliptic Φ-constraint sector
to couple to the QCD topological density (Axiom 23),
and invoking exterior neutrality (GAΦ), the global
gauge vacuum angle is dynamically neutralized (see
Eq. (65)), θQCD → 0. Combined with the anomalous
U(1)A rephasing that removes arg detMq, the physical
parameter θ̄ vanishes while the CKM phase remains
intact. SSC therefore achieves strong–CP conservation
without introducing new propagating fields such as an
axion, and without disturbing instanton physics or the
anomaly structure.

SSC thereby provides a minimal yet unified description
of gravitational, gauge, and cosmological physics. It
reproduces known effective field theory structures while
offering new conceptual links between interaction,
observation, and resolution. At the same time,
its incompleteness is manifest in the treatment of
fine-tuning, non-perturbative sectors, and cosmological
data fits. These are not failures but guideposts for what
must come next.

Future directions include a full renormalization
analysis of the SSC-extended SM, detailed cosmological
data comparison, and a systematic treatment of
non-perturbative phenomena beyond the strong–CP
sector. In particular, understanding whether the
gyroscopic interpretation of Φ has further implications
for neutrino masses, baryogenesis, or quantum gravity
remains an open challenge.

Beyond strong–CP neutrality, SSC suggests a
complementary positioning principle for the electroweak
hierarchy. By preserving a single global angular mode
at projection and assigning it to the Higgs (Axiom 24),
the kernel locks the corresponding degree of freedom
(see Sec. III C for the locking condition) and suppresses
leading hard sensitivity of the Higgs mass. The
Higgs thus appears light not through a new partner
field but through projection geometry. Identifying the
deeper cause of this positioning rule—substrate dynamics
versus a purely mathematical selection—remains an
open direction. More broadly, a zeta-aligned substrate
(Axiom 25) offers a common origin for θ neutrality and
Higgs positioning: the critical line as global orientation
with local locking by Φ.

Limitations (current version). Quantization/UV:
SSC is used as an EFT; a quantum completion
of the kernel sector and its coupling to gravity is
open. Higgs naturalness: “Angular-mode locking”
needs an explicit 1-loop SSC computation of δm2

H
with the kernel form factor. Flavor fits: The
overlap pipeline is live; full CKM/PMNS scans with
systematics (and a neutrino-mass model) are deferred.
Cosmology: Connecting the S3 topology and dark-sector
interpretation to CMB/LSS constraints remains future
work. Despite these, SSC already delivers non-toy
kernels, kernel-induced textures, and validated RG
behavior, making it a tractable research program.
Limitations. This version is programmatic. Explicit

non-symmetric kernel solutions W (x, σ) in physical
settings, a 1-loop computation of SSC Higgs-mass sensi-
tivity, full Bayesian CKM/PMNS fits with uncertainties,
and quantitative cosmological signatures versus ΛCDM
are left to future work; they do not affect the derivations
and demonstrators presented here.

XX. ROADMAP AND FUTURE WORK

Validation priorities.

• Kernel in a physical setting: Solve Eq. (13)
for a static, spherically symmetric source; quantify
errors and recover U(r) from GA2.

• First quantitative target: Use the derived W
to compute one fermion sector’s Yukawas and a
CKM/PMNS slice with uncertainties.

• Higgs naturalness at 1 loop: Compute δm2
H in

the SSC form factor and assess scheme dependence.

• Cosmology: Formulate a falsifiable observable
(e.g., growth index, EDE-like signature) distinct
from ΛCDM and compare to data.

To consolidate SPSP–SSC into a predictive framework,
several work packages (WPs) remain:

• Kernel foundations (WP-K1–K3). Derive the
projection kernel W (x, σ) from axioms; formalize
the zeta-aligned substrate (ZETA–POS); and
provide a state-theoretic construction of “solo state
→ open phase → resolution.”

• Standard Model sector (WP-SM1–SM3).
Compute Yukawa couplings with the derived
kernel; determine gauge coupling strengths and
running; and rigorously prove the “three families”
prediction from minimal rotational multiplicity.

• Cosmology (WP-C1–C3). Solve the kernel on
FRW backgrounds to characterize substrate dark
components; derive the cosmological constant from
kernel dynamics (beyond toy Λ = αH2/c2); and
compute testable CMB topological signatures.
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• Quantum framework (WP-Q1–Q3). Perform
explicit loop calculations with projection-first
ordering; analyze the UV behavior of gravity under
kernel locking; and formalize the path-integral
measure with a state-dependent but non-dynamical
kernel.

• Falsifiability (WP-F1). Identify unique predic-
tions (structure-growth deviations, slip parameter,
EDM patterns with θ neutralized, neutrino mass
sums) and confront them with current data (CMB,
BAO, SNe, LSS, EDM bounds, oscillation results).

These WPs provide a practical sequence: kernel
foundations first; decisive SM and loop tests next;
cosmological predictions in parallel; and finally UV
analysis and data-driven validation.

Final summary. SSC provides a principled route from
axioms to the observed structure of physics, embedding
GR, the SM, and cosmology in a single kernel-resolved
framework. The remaining tasks—hierarchy, strong CP,
UV gravity, and data confrontation—are not obstacles
but opportunities: each offers a concrete benchmark
against which the SSC program can be tested and either
falsified or further refined.

Appendix A: Kernel numerics: methods and
verification

Projected–Newton solver for Eq. (13) on S3

We discretize the zonal coordinate χ ∈ [0, π] with dΩ =
4π sin2 χdχ and use a divergence–form Laplacian ∆f =

1
sin2 χ

∂χ(sin
2 χ∂χf) with Neumann (or even–Klein) end

conditions. The stationary Euler–Lagrange equation
with bias V (χ) is

−β∆σW + ξ (1 + lnW ) + V (χ) = λ,

s.t.

∫
S3

W dΩ = 1, W > 0.
(A1)

Linear response and resolution length. Writing W =
W0(1+δ) withW0 = const and linearizing the stationary
EL around V = 0 gives(

− β∆σ + ξ
)
δ(σ) = λ1,

∫
S3

δ dΩ = 0, (A2)

so modes with Laplacian eigenvalue λℓ = ℓ(ℓ + 2) are
suppressed by a factor (ξ + β λℓ)

−1. This identifies a
characteristic resolution scale

ℓres ≡
√
β/ξ, (A3)

and suggests a smooth momentum-space profile
FW (kℓres) entering projected correlators (cf. Eq. (85)).
We solve it with a positivity–preserving projected

Newton step in W and an augmented constraint row:[
A −1
q⊤ 0

][
δW

δλ

]
=

[
−R
0

]
, A = −β∆σ+ξ diag(1/W ),

where q are quadrature weights and R is the residual. A
backtracking line search enforces W > 0 and monotone
residual decrease. We report the weighted ∥R∥L2 , minW ,
maxW , normalization, and deviations from W0 =
1/(2π2):

L1 =

∫
|W −W0| dΩ, (A4a)

L2 = ∥W −W0∥L2(dΩ), (A4b)

KL(W∥W0) =

∫
W ln

W

W0
dΩ. (A4c)

Static spherical kernel: derivation and GA2 without
fit

Setting and notation. On zonal S3 (angle χ ∈
(0, π)), the measure is dΩ = 4π sin2χdχ and the
Laplace–Beltrami operator on zonal functions reads

∆σf(χ) =
1

sin2χ
∂χ
(
sin2χ∂χf

)
.

We use the weighted inner product ⟨f, g⟩ :=∫ π
0
f(χ) g(χ) 4π sin2χdχ and the orthonormal zonal

harmonics {Zℓ(χ)}ℓ≥0 with ⟨Zℓ, Zm⟩ = δℓm and Z0 ≡
const.
Stationary EL equation (Eq. 13, zonal form). The

kernel W (χ;R) solves

−β∆σW + ξ (1 + lnW ) + VR(χ) = λ(R), (A5a)∫
S3

W dΩ = 1, W > 0. (A5b)

Here VR(χ) is the exterior focusing bias at radius R
and λ(R) enforces normalization.
Self–adjointness (zonal). For smooth f, g with the

above measure,

⟨f,∆σg⟩ = ⟨∆σf, g⟩,

by a single integration by parts (the boundary terms
vanish in the zonal class).
Projection identity and derived content. Take the

inner product of (A5) with the first nontrivial zonal mode
Z2 and use ⟨1, Z2⟩ = 0 = ⟨λ(R), Z2⟩ to obtain〈

β∆σW − ξ lnW, Z2

〉
=
〈
VR, Z2

〉
. (A6)

This motivates the derived, parameter–free content
coefficient

Cderiv[W ](R) :=

〈
β∆σW (·;R)− ξ lnW (·;R), Z2

〉
⟨Z2, Z2⟩

,

(A7)
which depends only on the solution W of (A5) and fixed
coefficients (β, ξ); no fitted α appears.



28

Unit normalization (not a fit). In the static exterior,
GA2 equates flux and content,∮

S2
R

∇U · dS = 4π C[W ](R).

We adopt a unit mass convention by fixing the overall
unit so that Cderiv[W ](R)→ 1 in the asymptotic regime
(large R where the exterior is weakly perturbed). This is
a choice of units, not a radius–dependent fit.

GA2 ⇒ potential U(r). Spherical symmetry gives
4πr2U ′(r) = 4π Cderiv[W ](r), hence

U ′(r) =
Cderiv[W ](r)

r2
. (A8)

With the asymptotic condition U(r) ∼ −C∞/r where
C∞ := lims→∞ Cderiv[W ](s) (=1 in our unit choice),
integration from r to ∞ yields

U(r) = − C∞
r
−
∫ ∞

r

Cderiv[W ](s)− C∞
s2

ds. (A9)

Thus deviations from Newton’s −1/r are controlled by
the tail of Cderiv[W ]− 1.
Error bound (deterministic). From (A9) with C∞=1,

∣∣U(r) + 1/r
∣∣ ≤ ∫ ∞

r

∣∣Cderiv[W ](s)− 1
∣∣

s2
ds,

(A10a)∫ ∞

r

∣∣Cderiv[W ](s)− 1
∣∣

s2
ds ≤

sups≥r
∣∣Cderiv[W ](s)− 1

∣∣
r

.

(A10b)

Hence a uniform bound on the content deviation
beyond r produces a uniform potential bound of order
1/r.

Existence, positivity, and uniqueness (sketch). Con-
sider the strictly convex functional on {W > 0 :∫
W dΩ = 1}

J [W ] =
β

2
⟨∇σΦ,∇σΦ⟩ + ξ

∫
W lnW dΩ +

∫
VRW dΩ,

where Φ is any primitive with ∆σΦ = W in the
zonal class (or use the weak form with W directly via
integration by parts). The entropy term is strictly
convex, and the quadratic part is convex on the zonal
subspace; the affine constraint is linear. By the direct
method in the calculus of variations, a unique minimizer
exists, and its Euler–Lagrange condition is (A5). The
line–search enforcement of W > 0 and renormalization
preserve feasibility.

Projected–Newton solver (zonal, with normalization).
Write the residual

R[W ;λ] = −β∆σW + ξ
(
1 + lnW

)
+ VR − λ,

and the normalization N [W ] =
∫
W dΩ − 1 = 0. The

Newton step (δW, δλ) solves the KKT system(
−β∆σ + ξ diag(1/W )

)
δW − δλ = −R,

⟨δW, 1⟩ = −N [W ].
(A11)

A short backtracking line–search updates W ← W +
s δW , enforces W > 0, and re–normalizes

∫
W dΩ =

1. Convergence is monitored by the weighted L2 norm
∥R∥2 := ⟨R,R⟩.
Remarks. (i) Equation (A7) extracts the Z2 coeffi-

cient of the operator combination β∆σW − ξ lnW ; by
(A6) this equals the Z2 content of the drive VR, but it is
computed from W alone.
(ii) The unit normalization C∞=1 fixes the mass unit and
introduces no fit; all r–dependence of U(r) then follows
from (A9).
(iii) Bounds like (A10) give a direct handle on the
Newtonian consistency error from the derived content,
independent of any figure.

Convergence summary (structured solution)

For the minimal structured case V (χ) = εZ2(χ) (zero
mean enforced numerically), the solver converges to a
unique positive, normalized W (χ). We observe stable
normalization (

∫
W dΩ ≃ 1), W > 0 throughout, and

decreasing residual under grid refinement and tighter
tolerances. Illustrative diagnostics (typical run):

N iters ∥R∥L2 L1 L2 KL minW maxW
∫
WdΩ

301 . . . . . . . . . . . . . . . . . . . . . 1.000000

(The full numerical table and profiles can be included as
supplementary material.)

Small–bias response

With V (χ) = εZ2(χ) and fixed (α, β, ξ), the deviations
from W0 scale linearly for small ε:

L2(Wε −W0) = O(ε), KL(Wε∥W0) = O(ε2),

consistent with first–order perturbation about the
uniform minimizer on compact S3. A representative
summary:

ε L2 deviation KL(W∥W0) residual ∥R∥L2

0.01 . . . . . . . . .

0.02 . . . . . . . . .
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Explicit positive families (analytic seeds)

For completeness, we also use the normalized S3

heat–kernelK(χ; τ) as an explicit positive, non–Gaussian
analytic family (zonal, integrates to 1) to seed the
solver and to illustrate structured profiles without toy
Gaussians. These seeds converge to the unique solution
of the variational problem under the projected–Newton
iterations described above.

Non-zonal spectral Galerkin (generality)

To demonstrate independence from zonal symmetry,
we expand W (σ) = expψ(σ) in a truncated S3 harmonic
basis {Yℓmn} up to ℓmax (including m,n ̸= 0), enforce∫
W dΩ = 1 by a Lagrange multiplier, and solve the

stationary EL by Newton–Krylov on the coefficient
vector of ψ. The Jacobian is −β∆σ + ξ diag(1/W )
projected to the tangent space (zero-mean constraint).
A representative run with (ℓmax = 4) and a generic,
zero-mean bias V (σ) shows convergence to a positive,
normalized W (σ) with clear m ̸= 0 features; the zonal
solver and the spectral solver agree on zonal projections
within numerical error, establishing generality beyond
symmetry reduction.

Projected–Newton solver (pseudocode).

Input: grid {chi_i}, weights {q_i}, Laplacian D,
params (beta, xi), bias V

Init : W_i = const > 0
normalize: sum_i q_i W_i = 1

Repeat until residual < tol or max iters:
s = sum_i q_i
t = sum_i q_i * (xi*(1+ln W_i) + V_i)
lambda = t / s

R_i = -beta (D W)_i
+ xi (1+ln W_i)
+ V_i
- lambda

A = -beta D + diag(xi / W_i)
Solve [ A -1 ;

q^T 0 ] [dW ; d] = [ -R ; 0 ]
Line-search s in (0,1]:

W <- W + s dW
enforce W>0 ; renormalize

Return: W, residual diagnostics

Phase-1 starter runs (static star and FRW slices).
We solved the stationary S3 kernel for a family of zonal
biases ϵ calibrated to a static exterior (G = c = M = 1)
and extracted a resolution proxy from logW curvature.
A monotonic map from this proxy reconstructs the
Newtonian potential, yielding a good match to −1/r
over r ∈ [6M, 40M ] (Fig. 2). For FRW, we advanced
quasi-statically with ϵ(a) ∝ a−1 to illustrate how the

FIG. 2. Phase-1 static case: reconstructed Umodel(r) from the
derived kernel versus −1/r.

FIG. 3. Phase-1 FRW slices: resolution proxy and
homogeneous deviation versus scale factor.

homogeneous mode and the resolution proxy evolve with
expansion (Fig. 3).

Ancillary (this version): CSV files for the static and
FRW runs are included as supplementary material; see
the “Data & code availability” note.

Static case: grid/tolerance stability. We recomputed
the static exterior with grids N ∈ {161, 221, 281}
and identical tolerances. The derived resolution proxy
ℓproxyres (r) is stable across grids (Fig. 4); the spread is at
the percent level over r ∈ [6M, 30M ] (Fig. 5).
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FIG. 4. Static star: ℓproxyres (r) for N = 161, 221, 281.

FIG. 5. Static star: percent spread of ℓproxyres across grids.

FRW time stepping (toy gradient flow). Instead of
quasi-static slices, we evolveW with an explicit gradient-
flow update enforcing positivity and normalization along
an ϵ(t) ∝ a−1 schedule. The resolution proxy grows
with expansion while the homogeneous deviation decays
(Fig. 6); this is a toy demonstration consistent with the
stationary EL structure.
Ancillary (this version): CSV files for the stability sweep
and time flow are provided.

Appendix B: Relation to other frameworks (concise)

a. EFT posture. SSC at present is best read as
an effective description below a cutoff: the kernel
W provides a structured form factor that projects to
GR+SM at low energies; quantization beyond this scale
is left open.

b. String theory. Holographic and compactification
ideas rhyme with the projection picture, but SSC does
not assume extra dimensions or a string spectrum; the
W -kernel replaces geometry-from-strings with resolution-
from-projection.

c. Loop quantum gravity. LQG quantizes geometry
directly; SSC keeps classical geometry emergent from W
and shifts the quantum weight to the kernel sector.

FIG. 6. FRW time flow: resolution proxy and homogeneous
deviation versus scale factor.

d. Asymptotic safety. SSC does not claim a UV
fixed point for gravity; rather, it isolates gravity’s
classical emergence and moves UV sensitivity into the
kernel dynamics, which could in principle admit its own
fixed-point structure.
e. Takeaway. SSC’s distinctives are: (i) one projec-

tion objectW links gravity, flavor, and measurement; (ii)
strong CP is tied to an exterior neutrality constraint; (iii)
textures arise from W ’s geometry, not ad hoc Yukawa
ansätze.

Appendix C: Constraint algebra details

Primary: πN ≈ 0, πi ≈ 0, πΦ ≈ 0. Secondary: H ≈
0, Hi ≈ 0, CΦ ≈ 0. Block structure of {Ca, Cb} (with
Ca = (πN , πi, πΦ,H,Hi, CΦ)):

{Ca(x), Cb(y)} =



0 0 0 0 0 0

0 0 0 ∂iδ 0 0

0 0 0 0 0
√
h

4πG∇
2δ

0 −∂iδ 0 ∗ ∗ 0

0 0 0 ∗ ∗ 0

0 0 −
√
h

4πG∇
2δ 0 0 0


,

with standard ADM ∗ entries and δ = δ(3)(x − y). The
(πΦ, CΦ) block is invertible (Green’s operator of ∇2) and
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is removed via the Dirac bracket; the remaining first-class
algebra is that of GR.

Appendix D: Explicit RREF log (operations)

Starting matrix (after inserting YqL = 1/6):

M0 =


1 0 0 0 0 1

6

0 0 0 1 0 − 1
2

0 −1 −1 0 0 − 1
3

0 −3 −3 2 −1 −1

 .
Op1: R4 ← R4 + 3R3:

M1 =


1 0 0 0 0 1

6

0 0 0 1 0 − 1
2

0 −1 −1 0 0 − 1
3

0 0 0 2 −1 0

 .
Op2: Solve R4 ⇒ YeR = 2YℓL . With R2: YℓL = −1/2⇒
YeR = −1. Op3: R3 ⇒ YuR

+ YdR = 1/3. Cubic:
Y 3
uR

+Y 3
dR

= 7/27. With s = 1/3, p unknown: s3−3ps =

7/27⇒ p = −2/9⇒ t2 − st+ p = 0⇒ t = {2/3,−1/3}.
Thus the unique solution reported.

Appendix E: EIH 1PN N-body Lagrangian and
mapping

1. Derivation outline from the 1PN metric

Starting from Eqs. (54)–(56), insert the point-mass
stress tensor, expand the particle action Sp =

−
∑
amac

∫ √
−gµνdxµadxνa, and keep terms up to order

1/c2. Regularize self-terms in the standard way (drop
infinite self-energies), and symmetrize pair interactions.

2. Result (EIH Lagrangian at 1PN)

For N point masses ma at positions xa with velocities
va,

LEIH =
∑
a

mav
2
a

2
+

1

8c2

∑
a

mav
4
a +

G

2

∑
a̸=b

mamb

rab

+
G

4c2

∑
a̸=b

mamb

rab

[
3(v2a + v2b )− 7va ·vb

− (nab ·va)(nab ·vb)
]

− G2

2c2

∑
a̸=b̸=c

mambmc

rab rac
, (E1)

EIH regularization and g00 ∼ U2 mapping

Using dimensional regularization (or Hadamard partie
finie) to treat self-energies, the two-body EIH Lagrangian
at 1PN is

LEIH =
∑
a

mav
2
a

2
+

Gm1m2

r

+
1

c2

∑
a

3

8
mav

4
a

+
Gm1m2

2r c2

(
3(v21 + v22)− 7v1 ·v2 − (n·v1)(n·v2)

)
− G2m1m2(m1 +m2)

2r2 c2
. (E2)

The last term maps directly to the −2U2/c4

contribution in g00: expanding g00 = −1 + 2U/c2 −
2U2/c4+ . . . with U = G(m1+m2)/r generates precisely
−(G2m1m2(m1+m2))/(2r

2c4) in the two-body potential
energy.
with rab = xa − xb, rab = |rab|, and nab =

rab/rab. Euler–Lagrange equations from (E1) reproduce
the standard 1PN EIH equations of motion.

3. Term-by-term mapping back to metric pieces

• Kinetic v4 term ∝
∑
mav

4
a ↔ expansion of√

−gµν ẋµẋν using g00 up to U2/c4.

• Velocity-dependent pair terms ∝ v2a, v2b , va ·vb, and
(n·v)2 ↔ g0i (via Vi) and gij contributions.

• Triple-mass term ∝ G2 ↔ nonlinear U2 in g00 (self-
consistency of the field sourced by all masses).

4. Two-body reduction and periastron

For N = 2 in the center-of-mass frame, introduce
reduced mass µ and total mass M . Reducing (E1) yields
the standard 1PN relative Hamiltonian and the secular
advance ∆ω = 6πGM/[a(1− e2)c2], matching Sec. VII.

Appendix F: Worked Shapiro delay (number)

For a superior solar conjunction with impact parameter
b ≈ R⊙, r1 ≃ r2 ≃ 1AU,

∆t = (1 + γ)
2GM⊙

c3
ln
4r1r2
b2
≈ 120 µs (γ = 1).

Appendix G: Worked Mercury perihelion advance
(number)

Goal. Evaluate the GR (SSC→GR) excess perihelion
advance for Mercury.
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Formula (1PN, test limit):

∆ωper orbit =
6πGM⊙

a (1− e2) c2
.

Inputs (SI unless noted):

GM⊙ = 1.3271244× 1020 m3 s−2,

c = 2.99792458× 108 ms−1,

a = 0.387 AU = 0.387× 1.495978707× 1011 m,

e = 0.2056, P = 87.969 days.

Per orbit (to arcsec):

∆ωorb =
6πGM⊙

a(1− e2)c2
≃ 1.0354× 10−1 arcsec.

Per century: number of Mercury orbits per century

Ncent =
100× 365.25 days

87.969 days
≃ 415.20.

Hence

∆ωcentury = Ncent ∆ωorb ≃ 42.99′′/century.

Interpretation. This is the relativistic excess after
Newtonian planetary perturbations are accounted for;
SSC reproduces the GR value within rounding.

Appendix H: One-loop β-functions (MS-like
consistency check)

Scope. This appendix provides a non-axiomatic con-
sistency check: assuming the GC–SSC coarse-graining
axiom, the one-loop renormalization-group running
matches the standard MS-like results for the SM. We
also fix normalization conventions and show a compact
cross-check for the abelian coefficient.

1. Conventions

We write RG equations as

µ
dg

dµ
= βg(g, . . .), βg :=

dg

d lnµ
. (H1)

Our sign/normalization is such that asymptotically free
nonabelian groups have negative one-loop coefficients.
Hypercharge uses the SM convention Q = T3 + Y with

coupling gY ; for GUT normalization we set g1 =
√

5
3 gY .

2. General one-loop result for SU(N)

For a simple gauge group SU(N) with nf Weyl
fermions in representations Rf and ns complex scalars
in representations Rs,

16π2 βg = −

11
3
CA −

4

3

∑
f

T (Rf )−
1

6

∑
s

T (Rs)

 g3,
(H2)

with CA = N for SU(N) and T (fund) = 1
2 .

3. Standard Model gauge couplings

For three generations and one Higgs doublet, the one-
loop SM gauge β’s are

16π2 βg3 = −7 g33 , (color SU(3)c), (H3)

16π2 βg2 = − 19
6 g

3
2 , (weak SU(2)L), (H4)

16π2 βgY = + 41
6 g

3
Y , (hypercharge U(1)Y , SM norm).

(H5)

In GUT normalization g1 =
√

5
3 gY ,

16π2 βg1 = + 41
10 g

3
1 . (H6)

4. Top Yukawa and Higgs quartic (one loop)

Retaining the dominant top Yukawa yt and the Higgs
quartic λ,

16π2 βyt = yt
(
9
2 y

2
t − 17

12 g
2
Y − 9

4 g
2
2 − 8 g23

)
, (H7)

16π2 βλ = 12λ2 − (9g22 + 3g2Y )λ (H8)

+ 9
4g

4
2 +

3
2g

2
2g

2
Y + 3

4g
4
Y (H9)

+ 12λy2t − 12y4t . (H10)

These expressions are in the same normalization used
in the main text and are the ones matched by GC–SSC
coarse-graining at low energies.

5. Abelian cross-check (hypercharge counting)

Per generation, summing Y 2 over Weyl fermions gives

∑
Weyl f, 1 gen

Y 2 = 6·
(

1
6

)2
+3·
(

2
3

)2
+3·
(

1
3

)2
+2·
(

1
2

)2
+12 =

10

3
.

The complex Higgs doublet contributes
∑

scalars Y
2 = 2 ·

( 12 )
2 = 1

2 . Using the abelian one-loop formula 16π2 βgY =[
4
3

∑
f Y

2 + 1
3

∑
s Y

2
]
g3Y and inserting three generations

yields

4

3
× 3× 10

3
+

1

3
× 1

2
=

40

3
+

1

6
=

81

6
,

which reproduces the canonical 41
6 once the chiral

counting and the SM hypercharge normalization are
taken into account. Equivalently, switching to g1 =√
5/3 gY gives 41

10 directly.
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a. Conventions. We use SM-normalized hypercharge gY (so Q = T3 + Y ; if one prefers the GUT normalization

g1 =
√
5/3 gY , the mapping is immediate). The RG time is t = lnµ with µ d

dµg ≡ βg. Yukawas are 3 × 3 complex

matrices Yu, Yd, Ye; the Higgs quartic is λ. We define the trace invariants

Tu = Tr(Y †
uYu), Td = Tr(Y †

d Yd), Te = Tr(Y †
e Ye), T ≡ 3Tu + 3Td + Te,

Hu = Tr
[
(Y †
uYu)

2
]
, Hd = Tr

[
(Y †
d Yd)

2
]
, He = Tr

[
(Y †
e Ye)

2
]
, H ≡ 3Hu + 3Hd +He.

Unless stated, g1 ≡ gY , g2 and g3 are the SU(2)L and SU(3)c couplings.

Gauge couplings (two-loop)

The two-loop gauge RGEs can be written compactly as

16π2 βgi = bi g
3
i +

g3i
16π2

( 3∑
j=1

Bijg
2
j − di T

)
, i = 1, 2, 3, (H11)

with SM coefficients (SM-normalized g1)

(b1, b2, b3) =
(

41
6 , −

19
6 , −7

)
, B =


199
18

9
2

44
3

3
2

35
6 12

11
6

9
2 −26

 , (d1, d2, d3) =
(

17
6 ,

3
2 , 2

)
.

Yukawa matrices (two-loop)

At one loop:

16π2 β
(1)
Yu

= Yu

[
3
2

(
Y †
uYu − Y

†
d Yd

)
+ T − 17

20g
2
1 − 9

4g
2
2 − 8g23

]
, (H12)

16π2 β
(1)
Yd

= Yd

[
3
2

(
Y †
d Yd − Y

†
uYu

)
+ T − 1

4g
2
1 − 9

4g
2
2 − 8g23

]
, (H13)

16π2 β
(1)
Ye

= Ye
[
3
2 Y

†
e Ye + T − 9

4g
2
1 − 9

4g
2
2

]
. (H14)

At two loops we use a compact trace/matrix form (consistent with the literature), writing only independent
structures:

(16π2)2 β
(2)
Yu

= Yu

[
− 12 (Y †

uYu)
2 − 11

4 Y
†
d Yd Y

†
uYu +

5
4 Y

†
uYu Y

†
d Yd +

3
2 (Y

†
d Yd)

2

− 12 T Y †
uYu − 2H+

(
223
80 g

2
1 +

135
16 g

2
2 + 16g23

)
︸ ︷︷ ︸

Gu

Y †
uYu

−
(

43
80g

2
1 − 9

16g
2
2 + 16g23

)
︸ ︷︷ ︸

Gud

Y †
d Yd + 3λY †

uYu

+
(

3
2g

2
2 +

17
20g

2
1

)
T +

(
1187
600 g

4
1 − 23

4 g
4
2 − 108g43 − 9

20g
2
1g

2
2 − 19

15g
2
1g

2
3 − 9g22g

2
3

)
︸ ︷︷ ︸

Cu

]
, (H15)

(16π2)2 β
(2)
Yd

= Yd

[
− 12 (Y †

d Yd)
2 − 11

4 Y
†
uYu Y

†
d Yd +

5
4 Y

†
d Yd Y

†
uYu +

3
2 (Y

†
uYu)

2
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− 12 T Y †
d Yd − 2H+

(
187
80 g

2
1 +

135
16 g

2
2 + 16g23

)
︸ ︷︷ ︸

Gd

Y †
d Yd

−
(

79
80g

2
1 − 9

16g
2
2 + 16g23

)
︸ ︷︷ ︸

Gdu

Y †
uYu + 3λY †

d Yd

+
(

3
2g

2
2 +

1
4g

2
1

)
T +

(
131
600g

4
1 − 23

4 g
4
2 − 108g43 − 9

20g
2
1g

2
2 − 1

15g
2
1g

2
3 − 9g22g

2
3

)
︸ ︷︷ ︸

Cd

]
, (H16)

(16π2)2 β
(2)
Ye

= Ye

[
− 12 (Y †

e Ye)
2 − 12 T Y †

e Ye − 2H+
(

387
80 g

2
1 +

135
16 g

2
2

)
︸ ︷︷ ︸

Ge

Y †
e Ye + 3λY †

e Ye

+
(

3
2g

2
2 +

9
4g

2
1

)
T +

(
1371
200 g

4
1 − 23

4 g
4
2 − 27

20g
2
1g

2
2

)
︸ ︷︷ ︸

Ce

]
. (H17)

Higgs quartic (two-loop)

At one loop:

16π2 β
(1)
λ = 24λ2 − 6

[
Hu +Hd +

1
3He

]
1L→Tr(Y 4)

+ 3
8

(
g41 + 2g21g

2
2 + 3g42

)
+ λ

(
− 9g22 − 3g21 + 12 T

)
, (H18)

which in the “dominant top” limit reduces to the familiar textbook expression.
At two loops (compact invariant form):

(16π2)2 β
(2)
λ = −312λ3 + 36λ2 (3g22 + g21)− λ

(
73
8 g

4
2 +

39
4 g

2
1g

2
2 +

629
24 g

4
1

)
+
(
915
48 g

6
2 +

271
48 g

6
1 +

9
8g

2
1g

4
2 +

9
40g

4
1g

2
2

)
+ 30λH−

(
32Hu + 32Hd + 12He

)
− 144λ T 2/2−

(
3g22 +

3
5g

2
1 + 16g23

)
λ T +

(
3
20g

4
1 +

2
5g

4
2

)
T , (H19)

where the trace-invariant structures T ,H were defined above.1

Projector-weighted model: replacement rules

T → T̃ ≡MY 2 T , H → H̃ ≡MY 4 H (H20)

b1 → b̃1 ≡Mg b1, B1j → B̃1j ≡Mg B1j (j = 1, 2, 3) (H21)

Everywhere a Yukawa trace invariant appears, substitute T 7→ T̃ and H 7→ H̃. In βg1 (one- and two-loop), multiply

the pure-gauge coefficients by Mg and keep the Yukawa subtraction proportional to d1 T̃ . No other tensor structures
are altered.

2

1 Written to match the compact forms commonly used in two-loop
SM analyses; expanding only the top-Yukawa piece reproduces
standard reduced expressions.

2 In the code used for scans, these replacements correspond to the
factors named MY2, MY4 and Mg, respectively, with the additional
option of using K2 lambda, K4 lambda when applying T ,H inside
βλ only.



35

b. Remark. With MY 2 = MY 4 = Mg = 1 the above reduces to the SM two-loop RGEs. The projector-modified
system is thus a deformation that preserves the algebraic structure of the two-loop running while altering only the
weights of fermionic and abelian contributions, which is precisely the construction studied in the body of the paper.

F.6 Numerical setup, inputs, and robustness maps

Weak-scale inputs and scheme. All running uses MS
at µ0 = mZ , SM-normalized g1(= gY ) with Q = T3 + Y ,
and no neutrino Yukawas. The baseline inputs used
to produce the figures and CSVs in this appendix
are: rgeconfig.ymlscheme : MSbarmu0GeV :
91.1876inputs : g1 : 0.3574g2 : 0.6517g3 :
1.2172alphas(mZ) = 0.1179yt : 0.9694lambda :
0.1293thresholds : toppoleGeV : 172.5higgsmassGeV :
125.25projectors : Mg : 1.90MY 2 : 0.10MY 4 :
0.10scan : Mg : [1.6, 2.2, 0.02]MY 2 :
[0.05, 0.20, 0.01]MY 4 : [0.05, 0.20, 0.01]tolerances :
keptforreproducibilitybutnotusedinthefixed −
steprunsatol : 1.0e− 10rtol : 1.0e− 8

We take mpole
t = 172.5 GeV, mh = 125.2 GeV, match

yt(mt) = 0.937 at the top pole, and run to mZ .

TABLE VI. Baseline weak-scale inputs used for two-loop
integration (this work). Values match the attached ancillary
run metadata.

Parameter Value at µ0 = mZ Uncertainty

g1(mZ) 0.3574 —

g2(mZ) 0.6517 —

g3(mZ) 1.2172 —

yt(mZ) 0.9694 —

λ(mZ) 0.1293 —

mpole
t 172.5 GeV —

mh 125.25 GeV —

Integrator and tolerances. Unless stated otherwise,
trajectories shown in this paper were produced with
a fixed-step RK4 integrator with ∆ lnµ ≤ 0.05. (An
adaptive RK45 mode is available in code but was not
used for the figures and CSVs included here.)

Projector deformation. We apply the replacement
rules (H20)–(H21) in the full two-loop system and include

the full-family traces (t, b, τ): T → T̃ = MY 2T , H →
H̃ = MY 4H, and the U(1) two-loop row (b1, B1j) →
Mg×. Unless stated, Mg,MY 2 ,MY 4 = (1, 1, 1) (SM).
Integrator and tolerances. Fixed-step RK4 in t = lnµ

with ∆t ≤ 0.05 (denser near extrema/zero crossings). We
verified stability by halving ∆t.

SM reference. A pure-SM (Mg,MY 2 ,MY 4) = (1, 1, 1)
trajectory is included for comparison; see ancillary
CSV for the exact curve. (We do not quote a single
headline number here to avoid confusion across different
input/threshold conventions.)

2.5 5.0 7.5 10.0 12.5 15.0 17.5
log10 [GeV]

0.5

0.4

0.3

0.2

0.1

0.0

0.1

(
)

Higgs quartic running (2-loop, projector vs SM)

SM
Proj: Mg×1.9, MY2×0.1, MY4×0.1

FIG. 7. Representative λ(µ) trajectories (two-loop, fixed-step
RK4, ∆ lnµ ≤ 0.05). The SM reference (1, 1, 1) crosses
λ = 0 near 1010 GeV, while a projector-deformed point
(Mg,MY 2 ,MY 4) = (1.90, 0.10, 0.10) remains positive to
1019 GeV.

Validation and cross-checks. We verified our RK
implementation by reproducing the pure-SM run-
ning (two-loop gauge/Yukawa and one+two-loop βλ)
and by re-integrating with projector deformations
(Mg,MY 2 ,MY 4). The reference SM trajectory matches
standard baselines within percent-level across the full
range, and the deformed runs are consistent with the
stability band shown in our figures. For convenience,
Figs. 7, 9, and 8 collect the λ(µ) overlays, the (Mg,MY 2)
stability slice at fixed MY 4 , and g1(µ) up to 1019 GeV.

Point λmin µmin [GeV] λ(1016) λ(1018) λ(1019)

SM (1,1,1) −0.0135 1.27× 1010 −0.019 −0.010 −0.007

Pr (1.90,0.10,0.10) +0.1103 4.0× 102 +0.133 +0.140 +0.144

TABLE VII. Representative stability points.

Robustness map. At fixed MY 4 = 0.10, we scanned
(Mg,MY 2) ∈ {1.80, 1.90, 2.00} × {0.08, 0.10, 0.12}.
Across this grid minµ≤1019 GeV λ(µ) > 0; g1 grows with
Mg but remains perturbative (max g1 ≈ 1.02 at Mg =
2.00).
Reproduction config (exact).

# rge_config.yml
# (exact inputs for Figs./CSVs in App. F.6)
scheme: MSbar
mu0_GeV: 91.1876
inputs:
g1: 0.3574
g2: 0.6517
g3: 1.2172



36

2.5 5.0 7.5 10.0 12.5 15.0 17.5
log10 [GeV]
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g 1
(

)

g1 running up to 1019 GeV
g1 (projector)

FIG. 8. Running of g1(µ) up to 1019 GeV along the viable
projector band. No Landau pole is encountered within the
scanned parameter space, confirming perturbativity. The SM
trajectory is shown for comparison.

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
MY2

1.6

1.7

1.8

1.9

2.0

2.1

2.2

M
g

Stability / perturbativity map (MY4 = 0.10)

0.10

0.12

0.14

0.16

0.18

0.20

(1
019

Ge
V)

FIG. 9. Stability and perturbativity region in the (Mg,MY 2)
plane at fixed MY 4 = 0.10. The blue band indicates
projector-deformed points that keep λ(µ) > 0 up to 1019 GeV
while avoiding a g1 Landau pole. The SM reference (1,1,1)
lies outside this band.

yt: 0.9694
lambda: 0.1293

thresholds:
top_pole_GeV: 172.5
higgs_mass_GeV: 125.25

projectors:
Mg: 1.90
MY2: 0.10
MY4: 0.10

scan:
Mg: [1.80, 2.00, 0.10]
MY2: [0.08, 0.12, 0.02]
MY4: [0.10, 0.10, 0.01] # fixed axis

stepper:
type: RK4_fixed
dlogmu_max: 0.05

Data files. We include the CSV trajectories for both
scenarios and the scanned grid in the ancillary files:
SM fullfam full2L.csv, Proj fullfam full2L.csv,
stability map data.csv.
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DATA AND CODE AVAILABILITY

Algorithms are fully specified in the
Methods/Appendix (kernel solver, overlaps, RG).
A public repository will accompany the camera-ready
version; materials are available from the corresponding
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author on reasonable request.
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