SPSP–SSC • Validation Notes (Worked Calculations)

Purpose. These notes show explicit, end-to-end calculations demonstrating that the Single Point Super Projection – Single Sphere Cosmology (SPSP–SSC) reproduces standard GR/SM/QM predictions in validated regimes, and is falsifiable where it differs (dipole radiation, horizon diagnostics, ultra-large scales). No number-fitting is used: we compute from first principles with standard constants.

0) Why SPSP–SSC = GR in validated regimes (1-page derivation)

  1. Action (validated limit).
    \[ S=\int d^4x\,\sqrt{-g}\Big[\tfrac{M_P^2}{2}R+\mathcal L_{\rm SM}-\Phi(\rho-\varepsilon)\Big] \;+\;S_{\rm proj}^{(\text{screened})}. \]
    Variation w.r.t. \(\Phi\) yields an elliptic constraint; outside matter \((\rho=\varepsilon=0)\), \(\nabla^2\Phi=0\Rightarrow \Phi=\text{const}\) (drops out). Screening makes \(S_{\rm proj}^{(\text{screened})}\to 0\) locally.
  2. Field equations (exterior). In vacuum: \(G_{\mu\nu}=0\) → Schwarzschild/Kerr solutions; matter is minimally coupled.
  3. PPN catalogue. Expansion to \(\mathcal O(v^4)\) gives
    \[ \boxed{\gamma=\beta=1,\qquad \xi=\alpha_{1,2,3}=\zeta_{1,2,3,4}=0} \]
    Therefore perihelion, light bending, Shapiro delay, redshift, geodetic and frame-dragging equal GR.
  4. Radiation sector. \(\Phi\) is non-radiative → no scalar dipole channel; only GR’s two TT modes, \(c_T=1\).

1) Solar System

1.1 Perihelion precession (Mercury, Venus, Earth, Mars)

Schwarzschild geodesics (or PPN with \(\gamma=\beta=1\)) give the excess precession per orbit

\[\Delta\varpi_{\rm per\,orbit}=\frac{6\pi GM_\odot}{a(1-e^2)c^2}.\]
Planet\(a\) (m)\(e\)Period (days)Excess (″/century)
Mercury5.7909×10100.205687.969≈ 43
Venus1.0821×10110.00677224.701≈ 8.6
Earth1.4960×10110.01671365.256≈ 3.84
Mars2.2794×10110.0934686.980≈ 1.35

Matches GR Numbers agree with standard GR values (after removing Newtonian perturbations).

1.2 Light deflection (solar limb)

\[\Delta\phi=\frac{4GM_\odot}{b\,c^2}, \quad b\simeq R_\odot \Rightarrow \Delta\phi\simeq 1.751''.\]

Matches GR The classic Eddington result; repeatedly confirmed in radio/optical.

1.3 Shapiro time delay (Earth–Mars, superior conjunction)

\[\Delta t \simeq \frac{2GM_\odot}{c^3}\,\ln\!\left(\frac{4r_E r_R}{b^2}\right) \approx 124~\mu{\rm s}.\]

Matches GR Cassini-level confirmations are reproduced as SPSP–SSC = GR locally.


2) Binary Pulsars & Gravitational Radiation

2.1 Quadrupole orbital decay (Peters–Mathews)

\[ \left\langle\frac{dP}{dt}\right\rangle =-\frac{192\pi}{5}\frac{G^{5/3}}{c^5}\left(\frac{2\pi}{P}\right)^{5/3} \frac{m_1 m_2}{M^{1/3}}\, \frac{1+\tfrac{73}{24}e^2+\tfrac{37}{96}e^4}{(1-e^2)^{7/2}}. \]
Worked numerics (Hulse–Taylor schematic)
  • \(m_1\!=\!m_2\!\approx\!1.4\,M_\odot\), \(e\!=\!0.617\), \(P\!=\!7.75~\text{h}\)
  • Predict \(\dot P\approx -2.4\times 10^{-12}\); observed \((-2.402\pm0.002)\times10^{-12}\)

Matches GR SPSP–SSC forbids any scalar dipole channel: \(\mathcal F_{\rm dip}=0\).

2.2 Hard falsifiability bounds (dipole/−1PN)


3) Redshift, Geodetic, Frame-Dragging

3.1 Gravitational redshift

\[\frac{\Delta\nu}{\nu} = -\frac{\Delta \Phi_N}{c^2}.\]

Pound–Rebka, optical clocks, GPS: reproduced exactly (SPSP–SSC = GR locally).

3.2 Geodetic (de Sitter) precession

\[\boldsymbol{\Omega}_{\rm dS}=\frac{3}{2}\frac{GM}{c^2 r}\,\boldsymbol{\Omega}\qquad(\text{GP-B: }6.6~\text{arcsec/yr}).\]

3.3 Lense–Thirring (frame-dragging)

\[\dot\Omega_{\rm LT}=\frac{2GJ}{c^2 a^3(1-e^2)^{3/2}}\qquad(\text{LAGEOS: }\sim 31~\text{mas/yr}).\]

4) Cosmology (linear regime)

With \(\Phi_g=\Psi\) and GR conservation, the growth factor obeys

\[ D''(a)+\left[\frac{3}{a}+\frac{H'(a)}{H(a)}\right]D'(a)-\frac{3}{2}\frac{\Omega_{m,0}H_0^2}{a^5 H(a)^2}D(a)=0, \]

giving the standard \(\Lambda\)CDM growth and lensing at current precision. GW speed is luminal, \(c_T=1\), from the TT action.


5) Reproducibility: constants & inputs

QuantityValue
Solar \(GM_\odot\)\(1.32712440018\times10^{20}\ \mathrm{m^3\,s^{-2}}\)
Speed of light \(c\)\(299{,}792{,}458\ \mathrm{m\,s^{-1}}\)
Solar radius \(R_\odot\)\(6.957\times10^{8}\ \mathrm{m}\)
Century (seconds)\(36525\times 86400\)
Planetary \(a,e,P\)JPL ephemerides (standard values; shown above)

6) What is contributed beyond “just reproducing GR”?

Bottom line. These worked calculations show SPSP–SSC must match GR where tested; its value is providing a unified origin for that match and sharply defining where and how to try to break it.